BOUNDEDNESS OF POLARIZED LOG CALABI-YAU FIBRATIONS

被引:0
作者
Jiao, Junpeng [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
VARIETIES; MODULI;
D O I
10.4310/jdg/1749495319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the boundedness of log pairs with log Calabi-Yau fibration structures. We prove that total spaces of log Calabi-Yau fibrations are bounded modulo crepant birational equivalence when the Iitaka volumes of log canonical divisors are bounded and general fibers are in a bounded family of polarized log Calabi-Yau pairs.
引用
收藏
页码:635 / 675
页数:41
相关论文
共 29 条
[1]   Weak semistable reduction in characteristic 0 [J].
Abramovich, D ;
Karu, K .
INVENTIONES MATHEMATICAE, 2000, 139 (02) :241-273
[2]   The moduli b-divisor of an lc-trivial fibration [J].
Ambro, F .
COMPOSITIO MATHEMATICA, 2005, 141 (02) :385-403
[3]  
Birkar, ANN SCI ECOLE NORM S
[4]  
Birkar C., ARXIV
[5]   Geometry of polarised varieties [J].
Birkar, Caucher .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2023, 137 (01) :47-105
[6]   Singularities of linear systems and boundedness of Fano varieties [J].
Birkar, Caucher .
ANNALS OF MATHEMATICS, 2021, 193 (02) :347-405
[7]   Anti-pluricanonical systems on Fano varieties [J].
Birkar, Caucher .
ANNALS OF MATHEMATICS, 2019, 190 (02) :345-463
[8]   EFFECTIVITY OF IITAKA FIBRATIONS AND PLURICANONICAL SYSTEMS OF POLARIZED PAIRS [J].
Birkar, Caucher ;
Zhang, De-Qi .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2016, 123 (01) :283-331
[9]   Existence of log canonical flips and a special LMMP [J].
Birkar, Caucher .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2012, (115) :325-368
[10]   Birational boundedness of rationally connected Calabi-Yau 3-folds [J].
Chen, Weichung ;
Cerbo, Gabriele Di ;
Han, Jingjun ;
Jiang, Chen ;
Svaldi, Roberto .
ADVANCES IN MATHEMATICS, 2021, 378