Machine learning models in the prediction of chronic or shunt-dependent hydrocephalus following subarachnoid hemorrhage: A systematic review and meta-analysis

被引:0
作者
Hajikarimloo, Bardia [1 ]
Mohammadzadeh, Ibrahim [2 ]
Habibi, Mohammad Amin [3 ]
Tos, Salem M. [1 ]
Asgarzadeh, Ali [4 ]
Tajvidi, Mahboobeh [5 ]
Aghajani, Saba [6 ]
Hashemi, Rana [7 ]
Kooshki, Alireza [8 ]
机构
[1] Univ Virginia, Dept Neurol Surg, Charlottesville, VA 22908 USA
[2] Shahid Beheshti Univ Med Sci, Loghman Hakim Hosp, Skull Base Res Ctr, Tehran, Iran
[3] Univ Tehran Med Sci, Shariati Hosp, Dept Neurosurg, Tehran, Iran
[4] Ardabil Univ Med Sci, Ardebil, Iran
[5] Abadan Univ Med Sci, Student Res Comm, Abadan, Iran
[6] Shahid Beheshti Univ Med Sci, Sch Med, Dept Med, Tehran, Iran
[7] Shahid Beheshti Univ Med Sci, Shohada Tajrish Hosp, Dept Neurol Surg, Tehran, Iran
[8] Birjand Univ Med Sci, Student Res Comm, Birjand, Iran
关键词
Subarachnoid hemorrhage; machine learning; deep learning; hydrocephalus; INTELLIGENCE;
D O I
10.1177/19714009251345104
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Purpose Chronic or shunt-dependent hydrocephalus is a frequent consequence of subarachnoid hemorrhage (SAH) with an unclear pathophysiology, making treatment challenging. Despite favorable outcomes following cerebrospinal fluid (CSF) diversion, high-risk surgical interventions remain necessary in some cases. Accurate prediction of chronic or shunt-dependent hydrocephalus in SAH patients can play an important role in their management. This systematic review and meta-analysis assessed the predictive performance of machine learning (ML) models in forecasting chronic or shunt-dependent hydrocephalus following SAH.Methods A systematic search of PubMed, Embase, Scopus, and Web of Science was conducted. ML or deep learning (DL)-based models that predicted chronic or shunt-dependent hydrocephalus following SAH were included. To avoid bias, only the data of the best-performance model, which was defined by the highest area under the curve (AUC) of the models, were extracted. The pooled AUC, accuracy (ACC), sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated using the R program.Results Six studies with 2096 individuals were included. The AUC, ACC, sensitivity, and specificity ranged from 0.8 to 0.92, 0.72 to 0.9, 0.73 to 0.85, and 0.7 to 0.92. The meta-analysis showed a pooled AUC of 0.83 (95%CI: 0.81-0.84) and ACC of 0.79 (95%CI: 0.66-0.91). The meta-analysis revealed a pooled sensitivity of 0.8 (95%CI: 0.73-0.85), specificity of 0.79 (95%CI: 0.68-0.86), and DOR of 12.13 (95%CI: 8.2-17.96) for predictive performance of these models.Conclusion ML-based models showed encouraging predictive performance in forecasting chronic or shunt-dependent hydrocephalus following SAH.
引用
收藏
页数:11
相关论文
共 48 条
[1]  
Adeoye S, 2024, Cognizance Journal of Multidisciplinary Studies, V4, P80, DOI [10.47760/cognizance.2024.v04i11.006, 10.47760/cognizance.2024.v04i11.006, DOI 10.47760/COGNIZANCE.2024.V04I11.006]
[2]  
Ahmadi Koupaei Seyed Reza, 2024, Bull Emerg Trauma, V12, P35, DOI 10.30476/BEAT.2024.101708.1495
[3]  
Ahmed S, 2025, IEEE ACCESS, V13, P37370, DOI [10.1109/access.2024.3422319, 10.1109/ACCESS.2024.3422319]
[4]  
Anuyah S, 2024, Arxiv, DOI arXiv:2412.07050
[5]   Risk factors of shunt-dependent hydrocephalus after subarachnoid hemorrhage: a systematic review and meta-analysis based on observational cohort studies [J].
Chen, Lingzhuo ;
Meng, Yichen ;
Xue, Qiang ;
Zhao, Yuanyu ;
Zhou, Xuhui ;
Hu, Kejia ;
He, Hua .
NEUROSURGICAL REVIEW, 2024, 47 (01)
[6]   Using interpretability approaches to update "black-box" clinical prediction models: an external validation study in nephrology [J].
Cruz, Harry Freitas da ;
Pfahringer, Boris ;
Martensen, Tom ;
Schneider, Frederic ;
Meyer, Alexander ;
Boettinger, Erwin ;
Schapranow, Matthieu-P. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 111
[7]  
Dehkordi NR, 2024, MAYO CLIN P DIGIT H, V2, P21, DOI [10.1016/j.mcpdig.2023.11.003, 10.1016/j.mcpdig.2023.11.003]
[8]   Computational intelligence methods for rule-based data understanding [J].
Duch, W ;
Setiono, R ;
Zurada, JM .
PROCEEDINGS OF THE IEEE, 2004, 92 (05) :771-805
[9]   Natural History, Pathophysiology, and Recent Management Modalities of Intraventricular Hemorrhage [J].
Essibayi, Muhammed Amir ;
Abdallah, Omar Ibrahim ;
Mortezaei, Ali ;
Zaidi, Saif Eddine ;
Vaishnav, Dhrumil ;
Cherian, Jacob ;
Gungin, Parikh ;
Altschul, David ;
Labib, Mohamed .
JOURNAL OF INTENSIVE CARE MEDICINE, 2024, 39 (09) :813-819
[10]   Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population A Systematic Review and Meta-analysis [J].
Etminan, Nima ;
Chang, Han-Sol ;
Hackenberg, Katharina ;
de Rooij, Nicolien K. ;
Vergouwen, Mervyn D. I. ;
Rinkel, Gabriel J. E. ;
Algra, Ale .
JAMA NEUROLOGY, 2019, 76 (05) :588-597