ULTIMATE BOUNDEDNESS OF SOLUTIONS OF SOME SYSTEM OF THIRD-ORDER NONLINEAR DIFFERENTIAL EQUATIONS

被引:0
作者
Abdurasid, Ayinla A. [1 ]
Aduloju, Kehinde D. [2 ]
Raji, Musiliu T. [2 ]
Vincent, Olufunke R. [3 ]
Omeike, Mathew O. [2 ]
机构
[1] Lagos State Univ Sci & Technol, Dept Math Sci, Ikorodu, Lagos State, Nigeria
[2] Fed Univ Agr, Dept Math, Abeokuta, Ogun State, Nigeria
[3] Fed Univ Agr, Dept Comp Sci, Abeokuta, Ogun State, Nigeria
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2025年 / 49卷 / 05期
关键词
Ultimate boundedness; Lyapunov function; system of third-order nonlinear differential equations; STABILITY;
D O I
10.46793/KgJMat2505.727A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents sufficient conditions for the ultimate boundedness of solutions of some system of third-order nonlinear differential equations X +Psi( X-center dot) X<spacing diaeresis> + (X) X-center dot + H(X) = P(t, X, X-center dot, X<spacing diaeresis>), ... where Psi, are positive definite symmetric matrices, H, P are n-vectors continuous in their respective arguments, X is an element of Ilgn and t is an element of Ilg+ = [0, +infinity). We do not necessarily require H(X) differentiable to obtain our results. By using the Lyapunov's direct (second) method and constructing a complete Lyapunov function, earlier results are generalized.
引用
收藏
页码:727 / 740
页数:14
相关论文
共 35 条
[1]  
Afuwape A. U., 1985, Analisi Funzionale E Application (N.I.), V6, P99
[2]  
Afuwape A. U., 2004, Facultas Rerum Naturalium. Mathematica, V43, P7
[4]  
Chukwu E. N., 1975, Ann. Mat. Pura Appl., V104, P123, DOI [10.1007/BF02417013, DOI 10.1007/BF02417013]
[5]  
Ezeilo J. O. C., 1978, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., V55, P51
[6]  
Ezeilo J. O. C., 1966, Ann. Mat. Pura Appl., V74, P283, DOI [10.1007/bf02416460, DOI 10.1007/BF02416460]
[7]  
Ezeilo J. O. C., 1960, Q J MATH, V11, P64, DOI [10.1093/qmath/11.1.64, DOI 10.1093/QMATH/11.1.64]
[8]  
Ezeilo J. O. C., 1973, Equations Differentielles et Functionalles Non-lineares, P447
[9]  
Ezeilo J. O. C., 1963, J. Lond. Math. Soc., V38, P11, DOI [10.1112/jlms/s1-38.1.11, DOI 10.1112/JLMS/S1-38.1.11]