The rise of generative AI frameworks in drug discovery

被引:0
作者
Kotkondawar, Roshan R. [1 ]
Sutar, Sanjay R. [1 ]
Kiwelekar, Arvind W. [2 ]
Kadam, Vinod J. [1 ]
Jadhav, Shivajirao M. [1 ]
机构
[1] Dr Babasaheb Ambedkar Technol Univ, Dept Informat Technol, Raigad 402103, Maharashtra, India
[2] Dr Babasaheb Ambedkar Technol Univ, Dept Comp Engn, Lonere 402103, Maharashtra, India
关键词
Drug discovery; Large language model; Artificial intelligence; Generative AI; Deep learning; GRAPH NEURAL-NETWORK; MODEL; INTELLIGENCE; TOXICITY; VISION;
D O I
10.1007/s41060-025-00831-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The COVID-19 outbreak disrupted the world, highlighting the urgent need for efficient drug discovery. Traditional drug discovery methods, faced with an immense chemical search space for approximately 1060\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{60}$$\end{document} drug-like compounds, require substantial time and financial resources. Conventional in-lab techniques can test only 105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{5}$$\end{document} compounds per day, significantly increasing the cost and duration of drug discovery. Automating drug discovery through computational tools and algorithms is crucial to address these challenges. Drug producers increasingly integrate artificial intelligence (AI) techniques, such as graph neural networks and deep learning, to streamline drug discovery. Modeling molecular structures as string sequences has proven highly effective in solving numerous problems in drug discovery. Generative AI algorithms based on language modeling efficiently generate data by identifying patterns from training datasets. This study critically examines the algorithms and methodologies of generative AI in the context of drug discovery. It begins by exploring fundamental concepts and various generative models. The study then analyzed three prominent generative architectures: generative adversarial networks based on natural language, variational autoencoders, and generative AI models, evaluating their effectiveness in addressing key challenges in drug discovery. This study underscores the transformative role of generative artificial intelligence in advancing drug discovery, citing several prominent studies in the field. The review concludes by outlining future research directions and providing insight for leveraging generative AI models in the pharmaceutical sector.
引用
收藏
页数:22
相关论文
共 135 条
[51]   ZINC: A Free Tool to Discover Chemistry for Biology [J].
Irwin, John J. ;
Sterling, Teague ;
Mysinger, Michael M. ;
Bolstad, Erin S. ;
Coleman, Ryan G. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (07) :1757-1768
[52]   Chemformer: a pre-trained transformer for computational chemistry [J].
Irwin, Ross ;
Dimitriadis, Spyridon ;
He, Jiazhen ;
Bjerrum, Esben Jannik .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (01)
[53]  
Jain P, 2022, Arxiv, DOI [arXiv:2212.07826, DOI 10.48550/ARXIV.2212.07826]
[54]   Artificial intelligence in drug discovery: recent advances and future perspectives [J].
Jimenez-Luna, Jose ;
Grisoni, Francesca ;
Weskamp, Nils ;
Schneider, Gisbert .
EXPERT OPINION ON DRUG DISCOVERY, 2021, 16 (09) :949-959
[55]   Drug discovery with explainable artificial intelligence [J].
Jimenez-Luna, Jose ;
Grisoni, Francesca ;
Schneider, Gisbert .
NATURE MACHINE INTELLIGENCE, 2020, 2 (10) :573-584
[56]  
John PS, 2024, Arxiv, DOI arXiv:2411.10548
[57]   Generative Model for Proposing Drug Candidates Satisfying Anticancer Properties Using a Conditional Variational Autoencoder [J].
Joo, Sunghoon ;
Kim, Min Soo ;
Yang, Jaeho ;
Park, Jeahyun .
ACS OMEGA, 2020, 5 (30) :18642-18650
[58]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[59]  
Kalyan KS., 2021, arXiv, DOI DOI 10.48550/ARXIV.2108.05542
[60]   PubChem Substance and Compound databases [J].
Kim, Sunghwan ;
Thiessen, Paul A. ;
Bolton, Evan E. ;
Chen, Jie ;
Fu, Gang ;
Gindulyte, Asta ;
Han, Lianyi ;
He, Jane ;
He, Siqian ;
Shoemaker, Benjamin A. ;
Wang, Jiyao ;
Yu, Bo ;
Zhang, Jian ;
Bryant, Stephen H. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D1202-D1213