The rise of generative AI frameworks in drug discovery

被引:0
作者
Kotkondawar, Roshan R. [1 ]
Sutar, Sanjay R. [1 ]
Kiwelekar, Arvind W. [2 ]
Kadam, Vinod J. [1 ]
Jadhav, Shivajirao M. [1 ]
机构
[1] Dr Babasaheb Ambedkar Technol Univ, Dept Informat Technol, Raigad 402103, Maharashtra, India
[2] Dr Babasaheb Ambedkar Technol Univ, Dept Comp Engn, Lonere 402103, Maharashtra, India
关键词
Drug discovery; Large language model; Artificial intelligence; Generative AI; Deep learning; GRAPH NEURAL-NETWORK; MODEL; INTELLIGENCE; TOXICITY; VISION;
D O I
10.1007/s41060-025-00831-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The COVID-19 outbreak disrupted the world, highlighting the urgent need for efficient drug discovery. Traditional drug discovery methods, faced with an immense chemical search space for approximately 1060\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{60}$$\end{document} drug-like compounds, require substantial time and financial resources. Conventional in-lab techniques can test only 105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{5}$$\end{document} compounds per day, significantly increasing the cost and duration of drug discovery. Automating drug discovery through computational tools and algorithms is crucial to address these challenges. Drug producers increasingly integrate artificial intelligence (AI) techniques, such as graph neural networks and deep learning, to streamline drug discovery. Modeling molecular structures as string sequences has proven highly effective in solving numerous problems in drug discovery. Generative AI algorithms based on language modeling efficiently generate data by identifying patterns from training datasets. This study critically examines the algorithms and methodologies of generative AI in the context of drug discovery. It begins by exploring fundamental concepts and various generative models. The study then analyzed three prominent generative architectures: generative adversarial networks based on natural language, variational autoencoders, and generative AI models, evaluating their effectiveness in addressing key challenges in drug discovery. This study underscores the transformative role of generative artificial intelligence in advancing drug discovery, citing several prominent studies in the field. The review concludes by outlining future research directions and providing insight for leveraging generative AI models in the pharmaceutical sector.
引用
收藏
页数:22
相关论文
共 135 条
[1]   Designing optimized drug candidates with Generative Adversarial Network [J].
Abbasi, Maryam ;
Santos, Beatriz P. ;
Pereira, Tiago C. ;
Sofia, Raul ;
Monteiro, Nelson R. C. ;
Simoes, Carlos J., V ;
Brito, Rui ;
Ribeiro, Bernardete ;
Oliveira, Jose L. ;
Arrais, Joel P. .
JOURNAL OF CHEMINFORMATICS, 2022, 14 (01)
[2]   Attention-Based Graph Neural Network for Molecular Solubility Prediction [J].
Ahmad, Waciar ;
Tayara, Hilal ;
Chong, Kil To .
ACS OMEGA, 2023, 8 (03) :3236-3244
[3]   Diffusion Models in De Novo Drug Design [J].
Alakhdar, Amira ;
Poczos, Barnabas ;
Washburn, Newell .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (19) :7238-7256
[4]   Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models [J].
Allesoe, Rosa Lundbye ;
Lundgaard, Agnete Troen ;
Medina, Ricardo Hernandez ;
Aguayo-Orozco, Alejandro ;
Johansen, Joachim ;
Nissen, Jakob Nybo ;
Brorsson, Caroline ;
Mazzoni, Gianluca ;
Niu, Lili ;
Biel, Jorge Hernansanz ;
Brasas, Valentas ;
Webel, Henry ;
Benros, Michael Eriksen ;
Pedersen, Anders Gorm ;
Chmura, Piotr Jaroslaw ;
Jacobsen, Ulrik Plesner ;
Mari, Andrea ;
Koivula, Robert ;
Mahajan, Anubha ;
Vinuela, Ana ;
Tajes, Juan Fernandez ;
Sharma, Sapna ;
Haid, Mark ;
Hong, Mun-Gwan ;
Musholt, Petra B. ;
De Masi, Federico ;
Vogt, Josef ;
Pedersen, Helle Krogh ;
Gudmundsdottir, Valborg ;
Jones, Angus ;
Kennedy, Gwen ;
Bell, Jimmy ;
Thomas, E. Louise ;
Frost, Gary ;
Thomsen, Henrik ;
Hansen, Elizaveta ;
Hansen, Tue Haldor ;
Vestergaard, Henrik ;
Muilwijk, Mirthe ;
Blom, Marieke T. ;
Hart, Leen M. T. ;
Pattou, Francois ;
Raverdy, Violeta ;
Brage, Soren ;
Kokkola, Tarja ;
Heggie, Alison ;
McEvoy, Donna ;
Mourby, Miranda ;
Kaye, Jane ;
Hattersley, Andrew .
NATURE BIOTECHNOLOGY, 2023, 41 (03) :399-+
[5]   Low Data Drug Discovery with One-Shot Learning [J].
Altae-Tran, Han ;
Ramsundar, Bharath ;
Pappu, Aneesh S. ;
Pande, Vijay .
ACS CENTRAL SCIENCE, 2017, 3 (04) :283-293
[6]   Predicting novel drug candidates against Covid-19 using generative deep neural networks [J].
Amilpur, Santhosh ;
Bhukya, Raju .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2022, 110
[7]   Exploring the GDB-13 chemical space using deep generative models [J].
Arus-Pous, Josep ;
Blaschke, Thomas ;
Ulander, Silas ;
Reymond, Jean-Louis ;
Chen, Hongming ;
Engkvist, Ola .
JOURNAL OF CHEMINFORMATICS, 2019, 11 (1)
[8]   Boosted neural networks scoring functions for accurate ligand docking and ranking [J].
Ashtawy, Hossam M. ;
Mahapatra, Nihar R. .
JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2018, 16 (02)
[9]  
Basnet P., 2012, Promising pharmaceuticals, DOI [10.5772/1986, DOI 10.5772/1986]
[10]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242