RESTAD: RECONSTRUCTION AND SIMILARITY BASED TRANSFORMER FOR TIME SERIES ANOMALY DETECTION

被引:1
作者
Ghorbani, Ramin [1 ]
Reinders, Marcel J. T. [1 ]
Tax, David M. J. [1 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
来源
2024 IEEE 34TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, MLSP 2024 | 2024年
基金
荷兰研究理事会;
关键词
Time Series; Anomaly Detection; Radial Basis Function (RBF) kernel; Transformer;
D O I
10.1109/MLSP58920.2024.10734755
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Anomaly detection in time series data is crucial across various domains. The scarcity of labeled data for such tasks has increased the attention towards unsupervised learning methods. These approaches, often relying solely on reconstruction error, typically fail to detect subtle anomalies in complex datasets. To address this, we introduce RESTAD, an adaptation of the Transformer model by incorporating a layer of Radial Basis Function (RBF) neurons within its architecture. This layer fits a non-parametric density in the latent representation, such that a high RBF output indicates similarity with predominantly normal training data. RESTAD integrates the RBF similarity scores with the reconstruction errors to increase sensitivity to anomalies. Our empirical evaluations demonstrate that RESTAD outperforms various established baselines across multiple benchmark datasets.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization [J].
Abdulaal, Ahmed ;
Liu, Zhuanghua ;
Lancewicki, Tomer .
KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, :2485-2494
[2]   USAD : UnSupervised Anomaly Detection on Multivariate Time Series [J].
Audibert, Julien ;
Michiardi, Pietro ;
Guyard, Frederic ;
Marti, Sebastien ;
Zuluaga, Maria A. .
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, :3395-3404
[3]   LOF: Identifying density-based local outliers [J].
Breunig, MM ;
Kriegel, HP ;
Ng, RT ;
Sander, J .
SIGMOD RECORD, 2000, 29 (02) :93-104
[4]   Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines [J].
Choi, Kukjin ;
Yi, Jihun ;
Park, Changhwa ;
Yoon, Sungroh .
IEEE ACCESS, 2021, 9 :120043-120065
[5]   Personalized anomaly detection in PPG data using representation learning and biometric identification [J].
Ghorbani, Ramin ;
Reinders, Marcel J. T. ;
Tax, David M. J. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 94
[6]   Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding [J].
Hundman, Kyle ;
Constantinou, Valentino ;
Laporte, Christopher ;
Colwell, Ian ;
Soderstrom, Tom .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :387-395
[7]  
Kim S, 2022, AAAI CONF ARTIF INTE, P7194
[8]  
Mejri N, 2024, Arxiv, DOI arXiv:2212.03637
[9]  
Orr M.J.L., 1996, Introduction to Radial Basis Function Networks
[10]   Volume Under the Surface: A New Accuracy Evaluation Measure for Time-Series Anomaly Detection [J].
Paparrizos, John ;
Boniol, Paul ;
Palpanas, Themis ;
Tsay, Ruey S. ;
Elmore, Aaron ;
Franklin, Michael J. .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11) :2774-2787