Asymptotic Growth of Moduli of m-th Derivatives of Algebraic Polynomials in Weighted Bergman Spaces on Regions Without Zero Angles

被引:0
作者
Deger, Ugur [1 ]
Imashkyzy, Meerim [2 ]
Abdullayev, Fahreddin G. [1 ,3 ]
机构
[1] Mersin Univ, Fac Sci, Dept Math, Ciftlikkoy Campus, TR-33110 Mersin, Turkiye
[2] Kyrgyz Turkish Manas Univ, Fac Sci, Dept Appl Math & Informat, Chyngyz Aitmatov Campus, Bishkek 720038, Kyrgyzstan
[3] Inst Math & Mech MSE, AZ-1141 Baku, Azerbaijan
关键词
Bernstein-Markoff inequality; Walsh inequality; algebraic polynomial; quasiconformal mapping; quasicircle; asymptotically conformal curves; BIEBERBACH POLYNOMIALS; CONFORMAL-MAPPINGS; INEQUALITIES; CONVERGENCE; INTERIOR; BEHAVIOR; BOUNDARY; DOMAINS;
D O I
10.3390/axioms14050380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study asymptotic bounds on the m-th derivatives of general algebraic polynomials in weighted Bergman spaces. We consider regions in the complex plane defined by bounded, piecewise, asymptotically conformal curves with strictly positive interior angles. We first establish asymptotic bounds on the growth in the exterior of a given unbounded region. We then extend our analysis to the closures of the region and derive the corresponding growth bounds. Combining these bounds with those for the corresponding exterior, we obtain comprehensive bounds on the growth of the m-th derivatives of arbitrary algebraic polynomials in the whole complex plane.
引用
收藏
页数:25
相关论文
共 51 条
[1]   Bernstein-Nikol'skii-Type Inequalities for Algebraic Polynomials from the Bergman Space in Domains of the Complex Plane [J].
Abdullayev, F. G. ;
Gun, C. D. .
UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (04) :513-531
[2]   Bernstein-Walsh-Type Polynomial Inequalities in Domains Bounded by Piecewise Asymptotically Conformal Curve with Nonzero Inner Angles in the Bergman Space [J].
Abdullayev, F. G. ;
Abdullayev, G. A. ;
Simsek, D. .
UKRAINIAN MATHEMATICAL JOURNAL, 2019, 71 (05) :663-676
[3]   POLYNOMIAL INEQUALITIES IN LAVRENTIEV REGIONS WITH INTERIOR AND EXTERIOR ZERO ANGLES IN THE WEIGHTED LEBESGUE SPACE [J].
Abdullayev, F. G. ;
Ozkartepe, N. P. .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 100 (114) :209-227
[4]   ON THE GROWTH OF ALGEBRAIC POLYNOMIALS IN THE WHOLE COMPLEX PLANE [J].
Abdullayev, F. G. ;
Ozkartepe, N. P. .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (04) :699-725
[5]   On the Behavior of Algebraic Polynomial in Unbounded Regions with Piecewise Dini-Smooth Boundary [J].
Abdullayev, F. G. ;
Ozkartepe, P. .
UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (05) :645-665
[6]   ON BERNSTEIN-WALSH-TYPE LEMMAS IN REGIONS OF THE COMPLEX PLANE [J].
Abdullayev, F. G. ;
Aral, N. D. .
UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (03) :337-350
[7]  
Abdullayev F.G., 2001, Ukr. Math. J, V53, P1934, DOI [10.1023/A:1015419521005, DOI 10.1023/A:1015419521005]
[8]   Bernstein-Walsh type inequalities for derivatives of algebraic polynomials in quasidisks [J].
Abdullayev, Fahreddin G. .
OPEN MATHEMATICS, 2021, 19 (01) :1847-1876
[9]   An analogue of the Bernstein-Walsh lemma in Jordan regions of the complex plane [J].
Abdullayev, Fahreddin G. ;
Ozkartepe, Naciye Pelin .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013, 2013 (01)
[10]   Uniform convergence of the generalized Bieberbach polynomials in regions with non-zero angles [J].
Abdullayev, FG .
ACTA MATHEMATICA HUNGARICA, 1997, 77 (03) :223-246