Enhancing Low-Temperature Performance of Sodium-Ion Batteries via Anion-Solvent Interactions

被引:3
作者
Zheng, Cheng [1 ]
Yao, Qian [1 ]
Sun, Yanan [1 ]
Lv, Hongyu [1 ]
Bai, Zhongchao [2 ]
Zhang, Guoliang [1 ]
Wang, Nana [3 ]
Yang, Jian [1 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
[2] Univ Shanghai Sci & Technol, Inst Energy Mat Sci IEMS, Shanghai 200093, Peoples R China
[3] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Sydney, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
1,3-dioxolane; alloy-based anode; anion-solvent interaction; low temperature; sodium-ion batteries; ELECTROLYTE; INTERFACE;
D O I
10.1002/adfm.202501303
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) exhibit better low-temperature electrochemical performance than lithium-ion batteries (LIBs) due to sodium's unique physical and chemical properties. However, SIBs face significant challenges at extremely low temperatures, such as -40 degrees C, where electrolyte salting out, reduced ionic conductivity, and increased viscosity hinder performance. Optimizing electrolyte formulations is critical to overcoming these issues. This study introduces 1,3-Dioxolane (DOL) as a co-solvent to enhance electrolyte performance under low-temperature conditions. DOL significantly improves NaPF6 solubility by forming strong interactions with anions. Additionally, it modifies the solvation structure, increasing anion participation and promoting the formation of a NaF-rich solid electrolyte interphase (SEI) on the anode surface. These enhancements are supported by experimental data and computational simulations. The addition of DOL also improves the cycling stability of commercial Sn microparticles (mu-Sn) at low temperatures. mu-Sn achieves a high reversible capacity of 248.3 mAh g(-1) at -40 degrees C after 1500 cycles at 0.5 A g(-1), significantly outperforming electrolytes without DOL. This work provides a novel approach for designing advanced low-temperature electrolytes, enabling more reliable sodium-ion battery performance in extreme environments.
引用
收藏
页数:9
相关论文
共 42 条
[11]   A comprehensive review on liquid electrolyte design for low-temperature lithium/sodium metal batteries [J].
Huang, Zhenxin ;
Xiao, Zichun ;
Jin, Ruoshan ;
Li, Zhen ;
Shu, Chengyong ;
Shi, Renyi ;
Wang, Xiaowei ;
Tang, Zexun ;
Tang, Wei ;
Wu, Yuping .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (15) :5365-5386
[12]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38
[13]   Sodium-ion batteries: present and future [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3529-3614
[14]   Low-solvation electrolytes for high-voltage sodium-ion batteries [J].
Jin, Yan ;
Le, Phung M. L. ;
Gao, Peiyuan ;
Xu, Yaobin ;
Xiao, Biwei ;
Engelhard, Mark H. ;
Cao, Xia ;
Vo, Thanh D. ;
Hu, Jiangtao ;
Zhong, Lirong ;
Matthews, Bethany E. ;
Yi, Ran ;
Wang, Chongmin ;
Li, Xiaolin ;
Liu, Jun ;
Zhang, Ji-Guang .
NATURE ENERGY, 2022, 7 (08) :718-725
[15]   Practical Evaluation of Li-Ion Batteries [J].
Li, Hong .
JOULE, 2019, 3 (04) :911-914
[16]   Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes [J].
Li, Kaikai ;
Zhang, Jun ;
Lin, Dongmei ;
Wang, Da-Wei ;
Li, Baohua ;
Lv, Wei ;
Sun, Sheng ;
He, Yan-Bing ;
Kang, Feiyu ;
Yang, Quan-Hong ;
Zhou, Limin ;
Zhang, Tong-Yi .
NATURE COMMUNICATIONS, 2019, 10 (1)
[17]   3D Printed Supercapacitor: Techniques, Materials, Designs, and Applications [J].
Li, Mengrui ;
Zhou, Shiqiang ;
Cheng, Lukuan ;
Mo, Funian ;
Chen, Lina ;
Yu, Suzhu ;
Wei, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (01)
[18]   Ether-based electrolytes for sodium ion batteries [J].
Li, Ying ;
Wu, Feng ;
Li, Yu ;
Liu, Mingquan ;
Feng, Xin ;
Bai, Ying ;
Wu, Chuan .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (11) :4484-4536
[19]   Multifunctional Separator Enables High-Performance Sodium Metal Batteries in Carbonate-Based Electrolytes [J].
Liu, Haoxuan ;
Zheng, Xiaoyang ;
Du, Yumeng ;
Borras, Marcela Chaki ;
Wu, Kuan ;
Konstantinov, Konstantin ;
Pang, Wei Kong ;
Chou, Shulei ;
Liu, Huakun ;
Dou, Shixue ;
Wu, Chao .
ADVANCED MATERIALS, 2024, 36 (05)
[20]   Multiwfn: A multifunctional wavefunction analyzer [J].
Lu, Tian ;
Chen, Feiwu .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2012, 33 (05) :580-592