Multi-level Knowledge Distillation for Class Incremental Learning

被引:0
作者
Hu, Yongli [1 ]
Liu, Mengting [1 ]
Jiang, Huajie [1 ]
Feng, Lincong [1 ]
Yin, Baocai [1 ]
机构
[1] Beijing Univ Technol, Beijing, Peoples R China
来源
COMPUTER ANIMATION AND SOCIAL AGENTS, CASA 2024, PT I | 2025年 / 2374卷
关键词
Catastrophic forgetting; Knowledge distillation; Incremental learning;
D O I
10.1007/978-981-96-2681-6_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Incremental learning aims to train a model on a sequence of tasks while preserving previously learned knowledge, whereas catastrophic forgetting is a widely-studied problem. To tackle this concern, we design a multi-level knowledge distillation framework (MLKD), which combines coarse-grained and fine-grained distillations to effectively memorize past knowledge. For the coarse-grained distillation, we enforce the model to memorize the neighborhood relationships among samples. For the fine-grained distillation, we aim to memorize the activation logits within each sample. Through the multi-level knowledge distillation, we can learn more robust incremental learning models. In order to assess the efficacy of the MLKD, we perform experiments on two popular incremental learning benchmarks(CIFAR100 and Mini-ImageNet), and our approach achieves good performance.
引用
收藏
页码:290 / 305
页数:16
相关论文
共 32 条
[1]   SS-IL: Separated Softmax for Incremental Learning [J].
Ahn, Hongjoon ;
Kwak, Jihwan ;
Lim, Subin ;
Bang, Hyeonsu ;
Kim, Hyojun ;
Moon, Taesup .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :824-833
[2]   Rainbow Memory: Continual Learning with a Memory of Diverse Samples [J].
Bang, Jihwan ;
Kim, Heesu ;
Yoo, YoungJoon ;
Ha, Jung-Woo ;
Choi, Jonghyun .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8214-8223
[3]   Class-Incremental Continual Learning Into the eXtended DER-Verse [J].
Boschini, Matteo ;
Bonicelli, Lorenzo ;
Buzzega, Pietro ;
Porrello, Angelo ;
Calderara, Simone .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) :5497-5512
[4]  
Buzzega Pietro, 2020, Dark experience for general continual learning: a strong, simple baseline
[5]  
Caccia L., 2022, arXiv
[6]  
Chaudhry A, 2019, Arxiv, DOI arXiv:1812.00420
[7]  
Chaudhry Arslan, 2019, arXiv preprint arXiv:1902.10486, P2
[8]  
Farquhar S, 2019, Arxiv, DOI arXiv:1805.09733
[9]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778