Machine Learning Models for 3-Month Outcome Prediction Using Radiomics of Intracerebral Hemorrhage and Perihematomal Edema from Admission Head Computed Tomography (CT)

被引:1
作者
Dierksen, Fiona [1 ,2 ]
Sommer, Jakob K. [1 ]
Tran, Anh T. [1 ]
Lin, Huang [1 ]
Haider, Stefan P. [1 ,3 ]
Maier, Ilko L. [2 ]
Aneja, Sanjay [4 ]
Sanelli, Pina C. [5 ]
Malhotra, Ajay [1 ]
Qureshi, Adnan I. [6 ]
Claassen, Jan [7 ]
Park, Soojin [7 ,8 ]
Murthy, Santosh B. [9 ]
Falcone, Guido J. [10 ,11 ]
Sheth, Kevin N. [10 ,11 ]
Payabvash, Seyedmehdi [1 ,12 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, New Haven, CT 06510 USA
[2] Univ Med Gottingen, Dept Neurol, D-37075 Gottingen, Germany
[3] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Otorhinolaryngol, Munich, Germany
[4] Yale Sch Med, Dept Radiat Oncol, New Haven, CT 06510 USA
[5] Feinstein Inst Med Res, Manhasset, NY 11030 USA
[6] Univ Missouri, Zeenat Qureshi Stroke Inst, Dept Neurol, Columbia, MO 65211 USA
[7] Columbia Univ, Irving Med Ctr, New York Presbyterian Hosp, Dept Neurol, New York, NY 10065 USA
[8] Columbia Univ, Vagelos Coll Phys & Surg, New York, NY 10032 USA
[9] Weill Cornell Sch Med, Dept Neurol, New York, NY 10065 USA
[10] Yale Sch Med, Dept Neurol, New Haven, CT 06510 USA
[11] Yale Sch Med, Ctr Brain & Mind Hlth, New Haven, CT 06510 USA
[12] Columbia Univ, Irving Med Ctr, Dept Radiol, New York, NY 10027 USA
关键词
intracerebral hemorrhage; perihematomal edema; radiomics; machine learning; BLOOD-PRESSURE; NATURAL-HISTORY; ICH SCORE; PERFUSION;
D O I
10.3390/diagnostics14242827
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Intracerebral hemorrhages (ICH) and perihematomal edema (PHE) are respective imaging markers of primary and secondary brain injury in hemorrhagic stroke. In this study, we explored the potential added value of PHE radiomic features for prognostication in ICH patients. Methods: Using a multicentric trial cohort of acute supratentorial ICH (n = 852) patients, we extracted radiomic features from ICH and PHE lesions on admission non-contrast head CTs. We trained and tested combinations of different machine learning classifiers and feature selection methods for prediction of poor outcome-defined by 4-to-6 modified Rankin Scale scores at 3-month follow-up-using five different input strategies: (a) ICH radiomics, (b) ICH and PHE radiomics, (c) admission clinical predictors of poor outcomes, (d) ICH radiomics and clinical variables, and (e) ICH and PHE radiomics with clinical variables. Models were trained on 500 patients, tested, and compared in 352 using the receiver operating characteristics Area Under the Curve (AUC), Integrated Discrimination Index (IDI), and Net Reclassification Index (NRI). Results: Comparing the best performing models in the independent test cohort, both IDI and NRI demonstrated better individual-level risk assessment by addition of PHE radiomics as input to ICH radiomics (both p < 0.001), but with insignificant improvement in outcome prediction (AUC of 0.74 versus 0.71, p = 0.157). The addition of ICH and PHE radiomics to clinical variables also improved IDI and NRI risk-classification (both p < 0.001), but with a insignificant increase in AUC of 0.85 versus 0.83 (p = 0.118), respectively. All machine learning models had greater or equal accuracy in outcome prediction compared to the widely used ICH score. Conclusions: The addition of PHE radiomics to hemorrhage lesion radiomics, as well as radiomics to clinical risk factors, can improve individual-level risk assessment, albeit with an insignificant increase in prognostic accuracy. Machine learning models offer quantitative and immediate risk stratification-on par with or more accurate than the ICH score-which can potentially guide patients' selection for interventions such as hematoma evacuation.
引用
收藏
页数:14
相关论文
共 31 条
[1]   Radiomics: A Primer on Processing Workflow and Analysis [J].
Avery, Emily ;
Sanelli, Pina C. ;
Aboian, Mariam ;
Payabvash, Seyedmehdi .
SEMINARS IN ULTRASOUND CT AND MRI, 2022, 43 (02) :142-146
[2]   Peri-hematomal edema shape features related to 3-month outcome in acute supratentorial intracerebral hemorrhage [J].
Dierksen, Fiona ;
Tran, Anh T. ;
Zeevi, Tal ;
Maier, Ilko L. ;
Qureshi, Adnan, I ;
Sanelli, Pina C. ;
Werring, David J. ;
Malhotra, Ajay ;
Falcone, Guido J. ;
Sheth, Kevin N. ;
Payabvash, Seyedmehdi .
EUROPEAN STROKE JOURNAL, 2024, 9 (02) :383-390
[3]   Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral Hemorrhage [J].
Gebel, JM ;
Jauch, EC ;
Brott, TG ;
Khoury, J ;
Sauerbeck, L ;
Salisbury, S ;
Spilker, J ;
Tomsick, TA ;
Duldner, J ;
Broderick, JP .
STROKE, 2002, 33 (11) :2636-2641
[4]   Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage [J].
Gebel, JM ;
Jauch, EC ;
Brott, TG ;
Khoury, J ;
Sauerbeck, L ;
Salisbury, S ;
Spilker, J ;
Tomsick, TA ;
Duldner, J ;
Broderick, JP .
STROKE, 2002, 33 (11) :2631-2635
[5]   Perihematomal edema as predictor of outcome in spontaneous intracerebral hemorrhage [J].
Gupta, Mani ;
Verma, Rajesh ;
Parihar, Anit ;
Garg, Ravindra K. ;
Singh, Maneesh K. ;
Malhotra, Hardeep S. .
JOURNAL OF NEUROSCIENCES IN RURAL PRACTICE, 2014, 5 (01) :48-54
[6]   Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: independent validation and comparison with visual markers [J].
Haider, Stefan P. ;
Qureshi, Adnan I. ;
Jain, Abhi ;
Tharmaseelan, Hishan ;
Berson, Elisa R. ;
Zeevi, Tal ;
Werring, David J. ;
Gross, Moritz ;
Mak, Adrian ;
Malhotra, Ajay ;
Sansing, Lauren H. ;
Falcone, Guido J. ;
Sheth, Kevin N. ;
Payabvash, Seyedmehdi .
FRONTIERS IN NEUROSCIENCE, 2023, 17
[7]   Admission computed tomography radiomic signatures outperform hematoma volume in predicting baseline clinical severity and functional outcome in the ATACH-2 trial intracerebral hemorrhage population [J].
Haider, Stefan P. ;
Qureshi, Adnan I. ;
Jain, Abhi ;
Tharmaseelan, Hishan ;
Berson, Elisa R. ;
Zeevi, Tal ;
Majidi, Shahram ;
Filippi, Christopher G. ;
Iseke, Simon ;
Gross, Moritz ;
Acosta, Julian N. ;
Malhotra, Ajay ;
Kim, Jennifer A. ;
Sansing, Lauren H. ;
Falcone, Guido J. ;
Sheth, Kevin N. ;
Payabvash, Seyedmehdi .
EUROPEAN JOURNAL OF NEUROLOGY, 2021, 28 (09) :2989-3000
[8]   The ICH score - A simple, reliable grading scale for intracerebral hemorrhage [J].
Hemphill, JC ;
Bonovich, DC ;
Besmertis, L ;
Manley, GT ;
Johnston, SC .
STROKE, 2001, 32 (04) :891-896
[9]   Perihematomal edema-based CT-radiomics model to predict functional outcome in patients with intracerebral hemorrhage [J].
Huang, Xiaoyu ;
Wang, Dan ;
Ma, Yaqiong ;
Zhang, Qiaoying ;
Ren, Jialiang ;
Zhao, Hui ;
Li, Shenglin ;
Deng, Juan ;
Yang, Jingjing ;
Zhao, Zhiyong ;
Xu, Min ;
Zhou, Qing ;
Zhou, Junlin .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (09) :391-400
[10]   Radiomics for prediction of intracerebral hemorrhage outcomes: A retrospective multicenter study [J].
Huang, Xiaoyu ;
Wang, Dan ;
Zhang, Qiaoying ;
Ma, Yaqiong ;
Zhao, Hui ;
Li, Shenglin ;
Deng, Juan ;
Ren, Jialiang ;
Yang, Jingjing ;
Zhao, Zhiyong ;
Xu, Min ;
Zhou, Qing ;
Zhou, Junlin .
NEUROIMAGE-CLINICAL, 2022, 36