Detection of heavy metals in various stages of development for wild mosquitoes of Aedes aegypti and Aedes albopictus sourced from artificial aquatic niches in arbovirus endemic areas

被引:0
作者
Vargas, Valeria [1 ,2 ]
García-Martínez, Rocío [3 ]
Nava-Castro, Karen Elizabeth [4 ]
Garay-Canales, Claudia Angélica [1 ]
Cime-Castillo, Jorge [5 ]
Lanz-Mendoza, Humberto [5 ]
Del Río-Araiza, Victor Hugo [6 ]
Morales-Montor, Jorge [1 ]
机构
[1] Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mèxico
[2] Facultad de Medicina, Departamento de Farmacología, Universidad Nacional Autónoma de México, Coyoacán, Cuidad de México
[3] Departamento de Aerosoles Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán
[4] Grupo de Biología y Química Atmosféricas, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México
[5] Centro de investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Morelos, Cuernavaca
[6] Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México
关键词
Aedes aegypti; Aedes albopictus; Artificial aquatic niche; Dengue vectors; Environmental pollution; Heavy metal;
D O I
10.1016/j.scitotenv.2025.179551
中图分类号
学科分类号
摘要
Bioaccumulation of heavy metals was observed in Aedes aegypti and Aedes albopictus mosquitoes. Both species are recognized as primary vectors of arboviruses such as dengue, chikungunya, and Zika in an endemic arbovirus region of Iguala and Tomatal, Guerrero, Mexico; where specimens were collected from contaminated artificial aquatic niches. A total of nine heavy metals, including nickel, Cadmium, copper, and lead, were detected in the artificial aquatic niches and at various stages of mosquito development (larvae, pupae, and adults). The findings indicated that nickel and cadmium are the predominant metals in these environments. Furthermore, substantial bioaccumulation of heavy metals was evident in mosquitoes throughout their life cycle, particularly in larvae and pupae, with cadmium as the most prevalent metal. Adult females of Ae. aegypti exhibited higher concentrations of heavy metals than males, suggesting potential implications for reproduction and disease transmission capacity. The investigation underscores the significance of monitoring heavy metals accumulation and pollution in these niches, as it may influence mosquito ecology and potentially enhance their resistance to insecticides and susceptibility to viral infections. © 2025 The Authors
引用
收藏
相关论文
共 81 条
[1]  
Akhtar Z.R., Tariq K., Mavian C., Ali A., Ullah F., Zang L.S., Ali F., Nazir T., Ali S., Trophic transfer and toxicity of heavy metals from dengue mosquito Aedes aegypti to predator dragonfly Tramea cophysa, Ecotoxicology (London, England), 30, 6, pp. 1108-1115, (2021)
[2]  
Akoglu H., User's guide to correlation coefficients, Turk. J. Emerg. Med., 18, 3, pp. 91-93, (2018)
[3]  
Amdam G.V., Nilsen K.-A., Norberg K., Et al., Variation in endocrine signaling underlies variation in social life history, Am. Nat., 170, pp. 37-46, (2007)
[4]  
Amiard J.C., Amiard-Triquet C., Barka S., Pellerin J., Rainbow P.S., Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers, Aquatic toxicology (Amsterdam, Netherlands), 76, 2, pp. 160-202, (2006)
[5]  
Arambourou H., Planello R., Llorente L., Fuertes I., Barata C., Delorme N., Noury P., Herrero O., Villeneuve A., Bonnineau C., Chironomus riparius exposure to field-collected contaminated sediments: from subcellular effect to whole-organism response, Sci. Total Environ., 671, pp. 874-882, (2019)
[6]  
Arosio P., Levi S., Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage, Biochim. Biophys. Acta, 1800, 8, pp. 783-792, (2010)
[7]  
Black W.C., Bennett K.E., Gorrochotegui-Escalante N., Barillas-Mury C.V., Fernandez-Salas I., de Lourdes Munoz M., Farfan-Ale J.A., Olson K.E., Beaty B.J., Flavivirus susceptibility in Aedes aegypti, Arch. Med. Res., 33, 4, pp. 379-388, (2002)
[8]  
Black W.C., Snell T.K., Saavedra-Rodriguez K., Kading R.C., Campbell C.L., From global to local-new insights into features of pyrethroid detoxification in vector mosquitoes, Insects, 12, 4, (2021)
[9]  
Blewett T.A., Leonard E.M., Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters, Environmental pollution (Barking, Essex : 1987), 223, pp. 311-322, (2017)
[10]  
Bottino-Rojas V., Talyuli O.A., Jupatanakul N., Sim S., Dimopoulos G., Venancio T.M., Bahia A.C., Sorgine M.H., Oliveira P.L., Paiva-Silva G.O., Heme signaling impacts global gene expression, immunity and dengue virus infectivity in Aedes aegypti, PloS One, 10, 8, (2015)