Proof of Some Conjectural Congruences Involving Binomial Coefficients and Apery-like Numbers

被引:0
作者
Mao, Guoshuai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2025年
基金
中国国家自然科学基金;
关键词
Congruences; binomial coefficients; harmonic numbers; binary quadratic forms; Apery-like numbers; SUPERCONGRUENCES;
D O I
10.1007/s11464-024-0146-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly establish some congruences involving binomial coefficients and Apery-like numbers, for example, we prove the following result which was conjectured by Z.-H. Sun: Let p > 3 be a prime. Then & sum;(p-1)(k=0)(2kk) Wk/ (-12)(k)equivalent to{L-2-2p(mod p(2)) if p equivalent to 1(mod3) & 4p=L-2+27M(2), 0(modp(2)) if p equivalent to 2(mod3), where L, M are integers and W-n=& sum;& LeftFloor;n3 & RightFloor;k=0(2kk)(3kk)(n3k)(-3)(n-3k) are the second kind Apery-like numbers.
引用
收藏
页数:28
相关论文
共 26 条
[1]  
Apery R, 1979, ASTERISQUE, V61, P11
[2]   ANOTHER CONGRUENCE FOR THE APERY NUMBERS [J].
BEUKERS, F .
JOURNAL OF NUMBER THEORY, 1987, 25 (02) :201-210
[3]  
Gould HW., 1972, Combinatorial identities, a standardized set of tables listing 500 binomial coefficient summations
[4]   Congruences for Catalan Larcombe French numbers [J].
Ji, Xiao-Juan ;
Sun, Zhi-Hong .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 90 (3-4) :387-406
[5]   Apery-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators [J].
Kimoto, Kazufumi ;
Wakayama, Masato .
KYUSHU JOURNAL OF MATHEMATICS, 2006, 60 (02) :383-404
[6]   Ramanujan-Type Supercongruences Involving Almkvist-Zudilin Numbers [J].
Liu, Ji-Cai .
RESULTS IN MATHEMATICS, 2022, 77 (02)
[7]   ON A CONJECTURE OF KIMOTO AND WAKAYAMA [J].
Long, Ling ;
Osburn, Robert ;
Swisher, Holly .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) :4319-4327
[8]   Proof of some conjectural congruences modulo p3 [J].
Mao, Guo-Shuai ;
Li, Danrui .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (04) :496-509
[9]   On some congruences involving Domb numbers and harmonic numbers [J].
Mao, Guo-Shuai ;
Wang, Jie .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (10) :2179-2200
[10]   Proof of two conjectural supercongruences involving Catalan-Larcombe-French numbers [J].
Mao, Guo-Shuai .
JOURNAL OF NUMBER THEORY, 2017, 179 :88-96