Automated Box Classification in a Virtual Industrial Environment Using Machine Vision Algorithms

被引:0
作者
Guacheta-Alba, Juan C. [1 ]
Espitia Cubillos, Anny Astrid [2 ]
Jimenez Moreno, Robinson [3 ]
机构
[1] Univ Fed Rio de Janeiro, Mech Engn Program, Rio De Janeiro, Brazil
[2] Univ Mil Nueva Granada, Ind Engn Program, Bogota, Colombia
[3] Univ Mil Nueva Granada, Mechatron Engn Program, Bogota, Colombia
来源
2024 12TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION, ICCMA | 2024年
关键词
Factory Simulation; Process Automation; Machine Vision; ISO 780:2015 Symbols; UR5; Manipulator; SURF Algorithm;
D O I
10.1109/ICCMA63715.2024.10843920
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the development and evaluation of an automated system for box classification based on the detection of some ISO 780:2015 symbols, using a UR5 robotic manipulator and advanced machine vision techniques. The methodology integrates sensors, vision algorithms, and robotics to achieve precise classification. The UR5 manipulator, with six degrees of freedom, was kinematically modeled using DenavitHartenberg parameters, allowing for the calculation of the endeffector's position and orientation. The system employs the Speeded-Up Robust Features (SURF) algorithm for the detection and classification of symbols on the boxes. Simulation results in CoppeliaSim, processed in MATLAB, reveal an average detection time of 55 milliseconds and a recognition rate exceeding 95%, even under varying lighting and orientation conditions. The system demonstrates high precision and flexibility in handling boxes of different sizes and arrangements, validating its efficiency in automated virtual industrial environments.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 19 条
[1]  
Abidi Mohamed-Amine, 2016, International Journal of Computer Theory and Engineering, V8, P182, DOI 10.7763/IJCTE.2016.V8.1041
[2]  
[Anonymous], 2015, ISO 780:2015
[3]   Trends and challenges in robot manipulation [J].
Billard, Aude ;
Kragic, Danica .
SCIENCE, 2019, 364 (6446) :1149-+
[4]   Human-Robot Perception in Industrial Environments: A Survey [J].
Bonci, Andrea ;
Cen Cheng, Pangcheng David ;
Indri, Marina ;
Nabissi, Giacomo ;
Sibona, Fiorella .
SENSORS, 2021, 21 (05) :1-29
[5]   Dexterous Grasping by Manipulability Selection for Mobile Manipulator With Visual Guidance [J].
Chen, Fei ;
Selvaggio, Mario ;
Caldwell, Darwin G. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (02) :1202-1210
[6]   Toward fully autonomous mobile manipulation for industrial environments [J].
Doemel, Andreas ;
Kriegel, Simon ;
Kassecker, Michael ;
Brucker, Manuel ;
Bodenmueller, Tim ;
Suppa, Michael .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (04) :1-19
[7]  
Du Xue-Fei, 2022, [(APJB) Asia Pacific Journal of Business, 아태비즈니스연구], V13, P119
[8]   Product Line Engineering of Monitoring Functionality in Industrial Cyber-Physical Systems: A Domain Analysis [J].
Iglesias, Aitziber ;
Lu, Hong ;
Arellano, Cristobal ;
Yue, Tao ;
Ali, Shaukat ;
Sagardui, Goiuria .
21ST INTERNATIONAL SYSTEMS & SOFTWARE PRODUCT LINE CONFERENCE (SPLC 2017), VOL 1, 2017, :195-204
[9]   Smart Sensors Applications for a New Paradigm of a Production Line [J].
Indri, Marina ;
Lachello, Luca ;
Lazzero, Ivan ;
Sibona, Fiorella ;
Trapani, Stefano .
SENSORS, 2019, 19 (03)
[10]   A comprehensive review of object detection with deep learning [J].
Kaur, Ravpreet ;
Singh, Sarbjeet .
DIGITAL SIGNAL PROCESSING, 2023, 132