Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions

被引:3
作者
Huhulea, Ellen N. [1 ]
Huang, Lillian [1 ]
Eng, Shirley [1 ]
Sumawi, Bushra [2 ]
Huang, Audrey [1 ]
Aifuwa, Esewi [1 ]
Hirani, Rahim [1 ,3 ]
Tiwari, Raj K. [1 ,3 ]
Etienne, Mill [1 ,4 ]
机构
[1] New York Med Coll, Sch Med, Valhalla, NY 10595 USA
[2] Univ Texas Hlth Sci Ctr, Barshop Inst, San Antonio, TX 78229 USA
[3] New York Med Coll, Grad Sch Biomed Sci, Valhalla, NY 10595 USA
[4] New York Med Coll, Dept Neurol, Valhalla, NY 10595 USA
关键词
cancer; oncology; artificial intelligence; machine learning; deep learning; nanomedicine; social determinants of health; COMPUTER-AIDED DIAGNOSIS; TUMOR-INFILTRATING LYMPHOCYTES; MULTIMODAL DATA INTEGRATION; PROSTATE-CANCER DETECTION; POWERED SPATIAL-ANALYSIS; FINANCIAL TOXICITY; BREAST-CANCER; DETECTION CAD; MAMMOGRAPHY; BIOMARKER;
D O I
10.3390/biomedicines13040951
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cancer remains one of the leading causes of mortality worldwide, driving the need for innovative approaches in research and treatment. Artificial intelligence (AI) has emerged as a powerful tool in oncology, with the potential to revolutionize cancer diagnosis, treatment, and management. This paper reviews recent advancements in AI applications within cancer research, focusing on early detection through computer-aided diagnosis, personalized treatment strategies, and drug discovery. We survey AI-enhanced diagnostic applications and explore AI techniques such as deep learning, as well as the integration of AI with nanomedicine and immunotherapy for cancer care. Comparative analyses of AI-based models versus traditional diagnostic methods are presented, highlighting AI's superior potential. Additionally, we discuss the importance of integrating social determinants of health to optimize cancer care. Despite these advancements, challenges such as data quality, algorithmic biases, and clinical validation remain, limiting widespread adoption. The review concludes with a discussion of the future directions of AI in oncology, emphasizing its potential to reshape cancer care by enhancing diagnosis, personalizing treatments and targeted therapies, and ultimately improving patient outcomes.
引用
收藏
页数:18
相关论文
共 136 条
[81]   Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review [J].
Neal, R. D. ;
Tharmanathan, P. ;
France, B. ;
Din, N. U. ;
Cotton, S. ;
Fallon-Ferguson, J. ;
Hamilton, W. ;
Hendry, A. ;
Hendry, M. ;
Lewis, R. ;
Macleod, U. ;
Mitchell, E. D. ;
Pickett, M. ;
Rai, T. ;
Shaw, K. ;
Stuart, N. ;
Torring, M. L. ;
Wilkinson, C. ;
Williams, B. ;
Williams, N. ;
Emery, J. .
BRITISH JOURNAL OF CANCER, 2015, 112 :S92-S107
[82]   The complexity and difficulty of diagnosing lung cancer: findings from a national primary-care study in Wales [J].
Neal, Richard D. ;
Robbe, Iain J. ;
Lewis, Malcolm ;
Williamson, Ian ;
Hanson, Jane .
PRIMARY HEALTH CARE RESEARCH AND DEVELOPMENT, 2015, 16 (05) :436-449
[83]   Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer in patients who have undergone upper gastrointestinal endoscopy [J].
Niikura, Ryota ;
Aoki, Tomonori ;
Shichijo, Satoki ;
Yamada, Atsuo ;
Kawahara, Takuya ;
Kato, Yusuke ;
Hirata, Yoshihiro ;
Hayakawa, Yoku ;
Suzuki, Nobumi ;
Ochi, Masanori ;
Hirasawa, Toshiaki ;
Tada, Tomohiro ;
Kawai, Takashi ;
Koike, Kazuhiko .
ENDOSCOPY, 2022, 54 (08) :780-784
[84]   Traumatic Brain Injury and Artificial Intelligence: Shaping the Future of Neurorehabilitation-A Review [J].
Orenuga, Seun ;
Jordache, Philip ;
Mirzai, Daniel ;
Monteros, Tyler ;
Gonzalez, Ernesto ;
Madkoor, Ahmed ;
Hirani, Rahim ;
Tiwari, Raj K. ;
Etienne, Mill .
LIFE-BASEL, 2025, 15 (03)
[85]   Artificial Intelligence-Powered Spatial Analysis of Tumor-Infiltrating Lymphocytes as Complementary Biomarker for Immune Checkpoint Inhibition in Non-Small-Cell Lung Cancer [J].
Park, Sehhoon ;
Ock, Chan-Young ;
Kim, Hyojin ;
Pereira, Sergio ;
Park, Seonwook ;
Ma, Minuk ;
Choi, Sangjoon ;
Kim, Seokhwi ;
Shin, Seunghwan ;
Aum, Brian Jaehong ;
Paeng, Kyunghyun ;
Yoo, Donggeun ;
Cha, Hongui ;
Park, Sunyoung ;
Suh, Koung Jin ;
Jung, Hyun Ae ;
Kim, Se Hyun ;
Kim, Yu Jung ;
Sun, Jong-Mu ;
Chung, Jin-Haeng ;
Ahn, Jin Seok ;
Ahn, Myung-Ju ;
Lee, Jong Seok ;
Park, Keunchil ;
Song, Sang Yong ;
Bang, Yung-Jue ;
Choi, Yoon-La ;
Mok, Tony S. ;
Lee, Se-Hoon .
JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (17) :1916-+
[86]   Label-free tumor cells classification using deep learning and high-content imaging [J].
Piansaddhayanon, Chawan ;
Koracharkornradt, Chonnuttida ;
Laosaengpha, Napat ;
Tao, Qingyi ;
Ingrungruanglert, Praewphan ;
Israsena, Nipan ;
Chuangsuwanich, Ekapol ;
Sriswasdi, Sira .
SCIENTIFIC DATA, 2023, 10 (01)
[87]   Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world [J].
Prasad, Minakshi ;
Lambe, Upendra P. ;
Brar, Basanti ;
Shah, Ikbal ;
Manimegalai, J. ;
Ranjan, Koushlesh ;
Rao, Rekha ;
Kumar, Sunil ;
Mahant, Sheefali ;
Khurana, Sandip Kumar ;
Iqbal, Hafiz M. N. ;
Dhama, Kuldeep ;
Misri, Jyoti ;
Prasad, Gaya .
BIOMEDICINE & PHARMACOTHERAPY, 2018, 97 :1521-1537
[88]   Understanding the black-box: towards interpretable and reliable deep learning models [J].
Qamar, Tehreem ;
Bawany, Narmeen Zakaria .
PEERJ COMPUTER SCIENCE, 2023, 9
[89]  
Rajdeo Pankaj, 2024, Adv Cancer Res, V163, P1, DOI 10.1016/bs.acr.2024.08.001
[90]   AI in health and medicine [J].
Rajpurkar, Pranav ;
Chen, Emma ;
Banerjee, Oishi ;
Topol, Eric J. .
NATURE MEDICINE, 2022, 28 (01) :31-38