[1] Univ Sydney, Sch Comp Sci, Camperdown, NSW, Australia
[2] Univ Technol Sydney, Sch Comp Sci, Ultimo, Australia
来源:
NEURAL INFORMATION PROCESSING, ICONIP 2022, PT III
|
2023年
/
13625卷
关键词:
Image segmentation;
Foreground-Background (F-B) imbalance problem;
U-Net;
Loss functions;
D O I:
10.1007/978-3-031-30111-7_1
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Foreground-Background (F-B) imbalance problem has emerged as a fundamental challenge to building accurate image segmentation models in computer vision. F-B imbalance problem occurs due to a disproportionate ratio of observations of foreground and background samples. It degrades the model performance of image segmentation applications. Several loss functions are proposed to improve the classification performance of models on the traditional imbalanced data. But there is no sufficient information on whether these loss functions can improve the accuracy performance of the image segmentation models in the presence of F-B imbalance problem. In this paper, we perform a comparative analysis between four loss functions, namely Focal loss, Dice loss, Tversky and Mixed Focal loss to handle the F-B imbalance problem on datasets from various domains. We embed each loss function in the deep learning model using U-Net architecture and experimentally perform the evaluation in terms of accuracy, precision, F1-score and recall metrics. Then, we present a comparative discussion to the researchers to identify the appropriate loss function that achieves better detection accuracy in different domains.
机构:
Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China
Univ Nebraska, Omaha, NE 68106 USAUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Shi, Yong
;
Cui, Limeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 101408, Peoples R ChinaUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Cui, Limeng
;
Qi, Zhiquan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Qi, Zhiquan
;
Meng, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Meng, Fan
;
Chen, Zhensong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
机构:
Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China
Univ Nebraska, Omaha, NE 68106 USAUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Shi, Yong
;
Cui, Limeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 101408, Peoples R ChinaUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Cui, Limeng
;
Qi, Zhiquan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Qi, Zhiquan
;
Meng, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China
Meng, Fan
;
Chen, Zhensong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R ChinaUniv Chinese Acad Sci, Sch Econ & Management, Beijing 100049, Peoples R China