Genuine multipartite entanglement measure based on α-concurrence

被引:0
作者
Wang, Ke-Ke [1 ]
Wei, Zhi-Wei [1 ]
Fei, Shao-Ming [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2025年 / 140卷 / 05期
基金
中国国家自然科学基金;
关键词
QUANTUM CRYPTOGRAPHY; STATE; COMMUNICATION;
D O I
10.1140/epjp/s13360-025-06324-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantifying genuine entanglement is a crucial task in quantum information theory. Based on the geometric mean of bipartite alpha-concurrences among all bipartitions, we present a class of well-defined genuine multipartite entanglement (GME) measures G alpha C with one parameter alpha for arbitrary multipartite states. We show that the G alpha C is of continuity for any multipartite pure states. By utilizing the related symmetry, analytical results of G alpha C are derived for any n-qubit GHZ states and W states, which show that the GHZ states are more genuinely entangled than the W states. With explicit examples, we demonstrate that the G alpha C can distinguish different GME states that other GME measures fail to. These results justify the potential applications of G alpha C in characterizing genuine multipartite entanglements.
引用
收藏
页数:8
相关论文
共 53 条
[1]   Monotones and invariants for multi-particle quantum states [J].
Barnum, H ;
Linden, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6787-6805
[2]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[3]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[6]  
Bhatia R., 1997, MATRIX ANAL, DOI DOI 10.1007/978-1-4612-0653-8
[7]   Hierarchies of geometric entanglement [J].
Blasone, M. ;
Dell'Anno, F. ;
De Siena, S. ;
Illuminati, F. .
PHYSICAL REVIEW A, 2008, 77 (06)
[8]   Quantum resource theories [J].
Chitambar, Eric ;
Gour, Gilad .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[9]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[10]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663