Scene-based Graph Convolutional Networks for Federated Multi-Label Classification

被引:0
作者
Xue, Shaocong [1 ]
Luo, Wenjian [1 ,2 ]
Luo, Yongkang [1 ]
Yin, Zeping [1 ]
Gu, Jiahao [3 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Guangdong Prov Key Lab Novel Secur Intelligence T, Shenzhen 518055, Guangdong, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Guangdong, Peoples R China
[3] China Univ Min & Technol Beijing, Sch Sci, Beijing, Peoples R China
来源
2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024 | 2024年
关键词
Terms-federated learning; multi-label classification; graph convolution network; label correlations;
D O I
10.1109/IJCNN60899.2024.10651045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated multi-label learning can collaboratively train multi-label classification models without compromising user privacy. Compared to multi-class learning, one of the most critical issues of multi-label learning is how to capture the correlations between labels, which is often ignored by existing research on federated multi-label learning. In this paper, a scene-based federated multi-label learning framework is proposed, which effectively utilizes the dependencies among labels for model training on the client-side and aggregates diverse client information on the server-side. Specifically, in the local training phase, a scene recognition module is employed to detect the scene for each image and the corresponding label co-occurrence matrix is used to guide the propagation of image features on the label graph. In the aggregation phase, a scene-aware aggregation method is adopted to enrich the scene-label co-occurrence information of each client. Experiments on PASCAL VOC 2007 and MS-COCO show that our proposed method can significantly improve the accuracy of federated multi-label image classification.
引用
收藏
页数:9
相关论文
共 35 条
[11]  
Karimireddy SP, 2020, PR MACH LEARN RES, V119
[12]  
Kim J., 2021, arXiv
[13]   SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period [J].
Santerne, A. ;
Moutou, C. ;
Tsantaki, M. ;
Bouchy, F. ;
Hebrard, G. ;
Adibekyan, V. ;
Almenara, J. -M. ;
Amard, L. ;
Barros, S. C. C. ;
Boisse, I. ;
Bonomo, A. S. ;
Bruno, G. ;
Courcol, B. ;
Deleuil, M. ;
Demangeon, O. ;
Diaz, R. F. ;
Guillot, T. ;
Havel, M. ;
Montagnier, G. ;
Rajpurohit, A. S. ;
Rey, J. ;
Santos, N. C. .
ASTRONOMY & ASTROPHYSICS, 2016, 587
[14]  
Li T, 2020, P MACHINE LEARNING S, V2, P429
[15]   Federated Learning: Challenges, Methods, and Future Directions [J].
Li, Tian ;
Sahu, Anit Kumar ;
Talwalkar, Ameet ;
Smith, Virginia .
IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (03) :50-60
[16]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[17]   Compositional Model Based Fisher Vector Coding for Image Classification [J].
Liu, Lingqiao ;
Wang, Peng ;
Shen, Chunhua ;
Wang, Lei ;
van den Hengel, Anton ;
Wang, Chao ;
Shen, Heng Tao .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2335-2348
[18]  
Loshchilov I., 2017, CoRR
[19]  
McMahan Brendan, 2017, Artificial intelligence and statistics, P1273, DOI DOI 10.48550/ARXIV.1602.05629
[20]  
McMahan H. B., 2016, arXiv, P5, DOI DOI 10.48550/ARXIV.1610.05492