Integration of Electrical Energy Storage in Wave Energy Hardware-in-the-Loop Test Rigs

被引:0
作者
Garcia-Rosa, Paula B. [1 ]
Barrera-Cardenas, Rene A. [1 ]
Alessandri, Giacomo [2 ]
Gallorini, Federico [2 ]
Cruz, Mairead A. [3 ]
Cruz, Joao [3 ]
D'Arco, Salvatore [1 ]
机构
[1] SINTEF Energy Res, N-7034 Trondheim, Norway
[2] VGA Srl, I-06053 Deruta, Italy
[3] Yavin Four Consultants, Lisbon P-1500465, Portugal
基金
欧盟地平线“2020”;
关键词
Energy storage; Testing; Wave energy conversion; Numerical models; Fluctuations; Transformers; Real-time systems; Numerical simulation; Torque; Life estimation; hardware-in-the-loop; test rigs; wave energy; POWER TAKE-OFF; LINEAR GENERATOR; IMPULSE TURBINE; DESIGN; SYSTEM; MODEL;
D O I
10.1109/TSTE.2025.3542296
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a design methodology for integrating an electrical energy storage unit into a hardware-in-the-loop (HIL) test rig for wave energy converters (WECs). Typically, the power production from WECs is characterised by pronounced fluctuations at low frequency and high peaks compared to the average. Wave energy test rigs should be able to reproduce these variations to impose realistic conditions to the device under test. Thus, the grid connection of the rig must be sized to cope with high peaks, and additional measures may be required to avoid disturbances on nearby loads and negative effects on voltage quality. The integration of electrical energy storage can smoothen power fluctuations and mitigate these drawbacks, while resulting in lower installation and operating costs. The design methodology indicates how to effectively size the storage unit and which technology to favour based on the type and duration of test campaigns. Numerical simulation results are presented for a dual HIL test rig and operational profiles of three different WEC technologies. For designs with energy storage lifetime shorter than the calendar life, sensitivity analyses indicate that the rig's annual utilisation rate and the level of accelerated testing have a significant effect on the storage energy requirements.
引用
收藏
页码:1944 / 1955
页数:12
相关论文
共 44 条
[1]  
Alessandri G., 2023, P 15 EUR WAV TID EN
[2]  
Alessandri G., 2022, Int. Mar. Energy J., V5, P305
[3]   Numerical benchmarking study of a selection of wave energy converters [J].
Babarit, A. ;
Hals, J. ;
Muliawan, M. J. ;
Kurniawan, A. ;
Moan, T. ;
Krokstad, J. .
RENEWABLE ENERGY, 2012, 41 :44-63
[4]  
Babarit A, 2011, Report, P1
[5]   Development of a linear test rig for electrical power take off from waves [J].
Baker, N. J. ;
Mueller, M. A. ;
Ran, L. ;
Tavner, P. J. ;
McDonald, S. .
JOURNAL OF MARINE ENGINEERING AND TECHNOLOGY, 2007, (A10) :3-15
[6]   Evaluating Alternative Linear Vernier Hybrid Machine Topologies for Integration Into Wave Energy Converters [J].
Baker, Nick J. ;
Raihan, Mohammad A. H. ;
Almoraya, Ahmed A. ;
Burchell, Joseph W. ;
Mueller, Markus A. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2018, 33 (04) :2007-2017
[7]  
Barrera-Cardenas R, 2019, 2019 IEEE ELECTRIC SHIP TECHNOLOGIES SYMPOSIUM (ESTS 2019): EMERGING TECHNOLOGIES FOR FUTURE ELECTRIC SHIPS, P293, DOI [10.1109/ests.2019.8847932, 10.1109/ESTS.2019.8847932]
[8]   Hardware-In-the-Loop test rig for the ISWEC wave energy system [J].
Bracco, Giovanni ;
Giorcelli, Ermanno ;
Mattiazzo, Giuliana ;
Orlando, Vincenzo ;
Raffero, Mattia .
MECHATRONICS, 2015, 25 :11-17
[9]   Linear Tubular Permanent-Magnet Generators for the Inertial Sea Wave Energy Converter [J].
Cappelli, Luigi ;
Marignetti, Fabrizio ;
Mattiazzo, Giuliana ;
Giorcelli, Ermanno ;
Bracco, Giovanni ;
Carbone, Silvio ;
Attaianese, Ciro .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2014, 50 (03) :1817-1828
[10]   Oscillating flow rig for air turbine testing [J].
Correia da Fonseca, F. X. ;
Henriques, J. C. C. ;
Gato, L. M. C. ;
Falcao, A. F. O. .
RENEWABLE ENERGY, 2019, 142 :373-382