Interstellar Polarization Survey. V. Galactic Magnetic Field Tomography of the Spiral Arms Using Optical and Near-infrared Starlight Polarization

被引:0
作者
Angarita, Y. [1 ,2 ]
Versteeg, M. J. F. [1 ]
Haverkorn, M. [1 ]
Pelgrims, V. [3 ]
Rodrigues, C. V. [4 ]
Magalhaes, A. M. [5 ]
Santos-Lima, R. [5 ]
Kawabata, Koji S. [6 ]
机构
[1] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
[2] Chalmers Univ Technol, Dept Space Earth & Environm, S-41293 Gothenburg, Sweden
[3] Univ Libre Bruxelles, Sci Fac, CP230, B-1050 Brussels, Belgium
[4] Inst Nacl Pesquisas Espaciais INPE MCTI, Div Astrofis, Av Astronautas 1758, Sao Jose Dos Campos, SP, Brazil
[5] Univ Sao Paulo, IAG, Sao Paulo, Brazil
[6] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan
基金
巴西圣保罗研究基金会; 欧洲研究理事会;
关键词
WAVELENGTH DEPENDENCE; LOCAL BUBBLE; DISTANT STARS; DUST; PLANE; GAIA; SPECTROPOLARIMETRY; LATITUDES; ASTROPY; CLOUDS;
D O I
10.3847/1538-3881/addecc
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Interstellar linear polarization occurs when starlight passes through elongated dust grains aligned by interstellar magnetic fields. The observed polarization can come from different dust structures along the line of sight (LOS). By combining polarization measurements with stellar distances, we can study the plane-of-sky Galactic magnetic field (GMF) between the observer and the star and separate the contributions of clouds with different GMF properties. We used optical and near-infrared (NIR) polarization data from three regions in the Galactic plane (divided by b divided by < 1 degrees and 19 .degrees 8 < l < 25 .degrees 5) to perform a polarization decomposition across the Galactic arms. A comparison between the optical and NIR data showed an optical-to-NIR polarization ratio of two to three along the LOS and a consistent polarization angle across both wavelengths in all studied regions, within the measurement uncertainties. We applied the Bayesian Inference of Starlight Polarization in one dimension and the Gaussian mixture model methods to decompose the polarization in the three regions. The optical and NIR observations complemented each other, consistently identifying nearby (d less than or similar to 143 pc), intermediate (0.47 kpc < d < 1.2 kpc), and distant (1.5 kpc < d < 2.5 kpc) polarizing clouds, in agreement with previous findings of the Local Bubble wall, the Local Arm, and Sagittarius Arm dust structures. The results from both polarization decomposition methods agree and complement each other. Polarization tomography revealed significant LOS variations in the plane-of-sky magnetic field orientation in two of the three regions. The relative alignment between the magnetic fields traced by starlight polarization and Planck's polarized thermal dust emission at 353 GHz reaffirmed these variations.
引用
收藏
页数:21
相关论文
共 83 条
[1]   Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust [J].
Ade, P. A. R. ;
Aghanim, N. ;
Alina, D. ;
Alves, M. I. R. ;
Armitage-Caplan, C. ;
Amaue, M. ;
Arzoumanian, D. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banda, A. J. ;
Barreiro, R. B. ;
Battaner, E. ;
Benabed, K. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bracco, A. ;
Burigana, C. ;
Butler, R. C. ;
Cardoso, J. -F. ;
Catalano, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chiang, H. C. ;
Christensen, P. R. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, E. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. ;
de Gouveia Dal Pino, E. M. ;
De Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Desert, F. -X. .
ASTRONOMY & ASTROPHYSICS, 2015, 576
[2]   Planck 2018 results: III. High Frequency Instrument data processing and frequency maps [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Falgarone, E. ;
Fantaye, Y. ;
Finelli, F. ;
Frailis, M. ;
Fraisse, A. A. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[3]   Planck intermediate results XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies [J].
Aghanim, N. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Burigana, C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Comis, B. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Di Valentino, E. ;
Dickinson, C. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Falgarone, E. ;
Fantaye, Y. ;
Finelli, F. ;
Forastieri, F. ;
Frailis, M. ;
Fraisse, A. A. .
ASTRONOMY & ASTROPHYSICS, 2016, 596
[4]  
Aghanim N., 2020, Astron. Astrophys., V641, pA12, DOI DOI 10.1051/0004-6361/201833885
[5]  
AKAIKE H, 1998, SELECTED PAPERS HIRO, P199, DOI DOI 10.1007/978-1-4612-1694-0_15
[6]   The Local Bubble: a magnetic veil to our Galaxy [J].
Alves, M. I. R. ;
Boulanger, F. ;
Ferriere, K. ;
Montier, L. .
ASTRONOMY & ASTROPHYSICS, 2018, 611
[7]   Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia EDR3 stars brighter than G=18.5 [J].
Anders, F. ;
Khalatyan, A. ;
Queiroz, A. B. A. ;
Chiappini, C. ;
Ardevol, J. ;
Casamiquela, L. ;
Figueras, F. ;
Jimenez-Arranz, O. ;
Jordi, C. ;
Monguio, M. ;
Romero-Gomez, M. ;
Altamirano, D. ;
Antoja, T. ;
Assaad, R. ;
Cantat-Gaudin, T. ;
Castro-Ginard, A. ;
Enke, H. ;
Girardi, L. ;
Guiglion, G. ;
Khan, S. ;
Luri, X. ;
Miglio, A. ;
Minchev, I ;
Ramos, P. ;
Santiago, B. X. ;
Steinmetz, M. .
ASTRONOMY & ASTROPHYSICS, 2022, 658
[8]   Observational constraints on interstellar grain alignment [J].
Andersson, B-G ;
Potter, S. B. .
ASTROPHYSICAL JOURNAL, 2007, 665 (01) :369-389
[9]   A high sampling-density polarization study of the Southern Coalsack [J].
Andersson, BG ;
Potter, SB .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (03) :1088-1098
[10]   Interstellar Polarization Survey. IV. Characterizing the Magnetic Field Strength and Turbulent Dispersion Using Optical Starlight Polarization in the Diffuse Interstellar Medium [J].
Angarita, Y. ;
Versteeg, M. J. F. ;
Haverkorn, M. ;
Marchal, A. ;
Rodrigues, C. V. ;
Magalhaes, A. M. ;
Santos-Lima, R. ;
Kawabata, Koji S. .
ASTRONOMICAL JOURNAL, 2024, 168 (01)