O(2)-symmetry of 3D steady gradient Ricci solitons

被引:0
作者
Lai, Yi [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
CONVEX ANCIENT SOLUTIONS; MEAN-CURVATURE FLOW; LONG-TIME BEHAVIOR; ROTATIONAL SYMMETRY; CLASSIFICATION; UNIQUENESS; SHRINKING; RIGIDITY; FAMILY;
D O I
10.2140/gt.2025.29.687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that all 3D steady gradient Ricci solitons are O.2/-symmetric. The O.2/-symmetry is the most universal symmetry in Ricci flows with any type of symmetries. Our theorem is also the first instance of symmetry theorem for Ricci flows that are not rotationally symmetric. We also show that the Bryant soliton is the unique 3D steady gradient Ricci soliton with positive curvature that is asymptotic to a ray.
引用
收藏
页码:687 / 789
页数:104
相关论文
共 74 条
[1]   A pinching estimate for solutions of the linearized Ricci flow system on 3-manifolds [J].
Anderson, G ;
Chow, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (01) :1-12
[2]   Unique Asymptotics of Compact Ancient Solutions toThree-DimensionalRicci Flow [J].
Angenent, Sigurd ;
Brendle, Simon ;
Daskalopoulos, Panagiota ;
Sesum, Natasa .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (05) :1032-1073
[3]   Ancient solutions of Ricci flow on spheres and generalized Hopf fibrations [J].
Bakas, Loannis ;
Kong, Shengli ;
Ni, Lei .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 663 :209-248
[4]  
Bamler R H, 2007, Diplomarbeit
[5]   Compactness theory of the space of Super Ricci flows [J].
Bamler, Richard H. .
INVENTIONES MATHEMATICAE, 2023, 233 (03) :1121-1277
[6]  
Bamler RH, 2022, ACTA MATH-DJURSHOLM, V228, P1
[7]   On the rotational symmetry of 3-dimensional Κ-solutions [J].
Bamler, Richard H. ;
Kleiner, Bruce .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 779 :37-55
[8]   Long-time behavior of 3-dimensional Ricci flow D: Proof of the main results [J].
Bamler, Richard H. .
GEOMETRY & TOPOLOGY, 2018, 22 (02) :949-1068
[9]   Long-time behavior of 3-dimensional Ricci flow A: Generalizations of Perelman's long-time estimates [J].
Bamler, Richard H. .
GEOMETRY & TOPOLOGY, 2018, 22 (02) :775-844
[10]  
Bourni T, 2021, LOND MATH S, V463, P50