Gα13 Promotes Clonogenic Growth by Increasing Tolerance to Oxidative Metabolic Stress in Prostate Cancer Cells

被引:0
作者
Wu, Di [1 ]
Lim, Wei Kiang [1 ]
Chai, Xiaoran [1 ,2 ]
Seshachalam, Veerabrahma Pratap [2 ,3 ]
Rasheed, Suhail Ahmed Kabeer [1 ]
Ghosh, Sujoy [2 ,4 ]
Casey, Patrick J. [1 ,5 ]
机构
[1] Duke NUS Med Sch, Program Canc & Stem Cell Biol, 8 Coll Rd, Singapore 169857, Singapore
[2] Duke NUS Med Sch, Program Cardiovasc & Metab Disorders, 8 Coll Rd, Singapore 169857, Singapore
[3] Natl Canc Ctr Singapore, Program Clin & Translat Liver Canc Res, Div Med Sci, 30 Hosp Blvd, Singapore 168583, Singapore
[4] Pennington Biomed Res Ctr, Lab Funct Genom, 6400 Perkins Rd, Baton Rouge, LA 70808 USA
[5] Duke Univ, Dept Pharmacol & Canc Biol, Med Ctr, 308 Res Dr, Durham, NC 27710 USA
基金
英国医学研究理事会;
关键词
G alpha 13; GNA13; prostate cancer; superoxide; superoxide dismutase; SOD2; oxidative metabolic stress; mitochondria; LNCaP; PC3; MANGANESE-SUPEROXIDE-DISMUTASE; HETEROTRIMERIC G-PROTEINS; GNA13; EXPRESSION; ACTIVE-SITE; G12; FAMILY; GENE; SOD2; INVASION; PATHWAY; ALPHA;
D O I
10.3390/ijms26104883
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The oncogenic role of the G12 family in many human solid cancers has been extensively studied, primarily through the effects of constitutively active mutants of these proteins on cell migration and invasion. However, these mutations are not seen in cancers, and the biological role of G alpha 13 in prostate cancer tumorigenesis is largely unexplored. Here, we report that G alpha 13 promotes anchorage-independent colony formation, spheroid formation, and xenograft tumor growth in human prostate cancer cell lines. Transcriptome analyses suggest that G alpha 13 modulates genes in the mitochondria and are involved in the oxidative stress response. Silencing of GNA13 increased mitochondrial superoxide levels when prostate cancer cells were cultured in galactose medium and increased the sensitivity to oxidative metabolic stress when the cells were cultured in media containing non-glycolytic metabolites. Furthermore, G alpha 13 levels impacts the abundance of superoxide dismutase 2 (SOD2) in the mitochondria, as well as SOD2 promoter activity and mRNA expression. Importantly, expression of SOD2 could rescue the effect of G alpha 13 loss on suppression of anchorage-independent growth. Likewise, stable knockdown of SOD2 decreased anchorage-independent cell growth, which was enhanced by overexpression of G alpha 13. These results outline a novel biological function of G alpha 13 mediated via SOD2 in prostate cancer tumorigenesis and highlight it as a potential treatment target.
引用
收藏
页数:18
相关论文
共 94 条
[1]   Genomic correlates of clinical outcome in advanced prostate cancer [J].
Abida, Wassim ;
Cyrta, Joanna ;
Heller, Glenn ;
Prandi, Davide ;
Armenia, Joshua ;
Coleman, Ilsa ;
Cieslik, Marcin ;
Benelli, Matteo ;
Robinson, Dan ;
Van Allen, Eliezer M. ;
Sboner, Andrea ;
Fedrizzi, Tarcisio ;
Mosquera, Juan Miguel ;
Robinson, Brian D. ;
De Sarkar, Navonil ;
Kunju, Lakshmi P. ;
Tomlins, Scott ;
Wu, Yi Mi ;
Rodrigues, Daniel Nava ;
Loda, Massimo ;
Gopalan, Anuradha ;
Reuter, Victor E. ;
Pritchard, Colin C. ;
Mateo, Joaquin ;
Bianchini, Diletta ;
Miranda, Susana ;
Carreira, Suzanne ;
Rescigno, Pasquale ;
Filipenko, Julie ;
Vinson, Jacob ;
Montgomery, Robert B. ;
Beltran, Himisha ;
Heath, Elisabeth I. ;
Scher, Howard I. ;
Kantoff, Philip W. ;
Taplin, Mary-Ellen ;
Schultz, Nikolaus ;
deBono, Johann S. ;
Demichelis, Francesca ;
Nelson, Peter S. ;
Rubin, Mark A. ;
Chinnaiyan, Arul M. ;
Sawyers, Charles L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (23) :11428-11436
[2]   Genetic variants of antioxidant and xenobiotic metabolizing enzymes and their association with prostate cancer: A meta-analysis and functional in silico analysis [J].
Alvarez-Gonzalez, Beatriz ;
Porras-Quesada, Patricia ;
Arenas-Rodriguez, Veronica ;
Tamayo-Gomez, Alba ;
Vazquez-Alonso, Fernando ;
Javier Martinez-Gonzalez, Luis ;
Hernandez, Antonio F. ;
Jesus Alvarez-Cubero, Maria .
SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 898
[3]   Gα12 is targeted to the mitochondria and affects mitochondrial morphology and motility [J].
Andreeva, Alexandra V. ;
Kutuzov, Mikhail A. ;
Voyno-Yasenetskaya, Tatyana A. .
FASEB JOURNAL, 2008, 22 (08) :2821-2831
[4]  
Andrews S., 2010, FASTQC QUALITY CONTR
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]   Antioxidant and Vitamin E Transport Genes and Risk of High-Grade Prostate Cancer and Prostate Cancer Recurrence [J].
Bauer, Scott R. ;
Richman, Erin L. ;
Sosa, Eduardo ;
Weinberg, Vivian ;
Song, Xiaoling ;
Witte, John S. ;
Carroll, Peter R. ;
Chan, June M. .
PROSTATE, 2013, 73 (16) :1786-1795
[7]   Molecular alterations in primary prostate cancer after androgen ablation therapy [J].
Best, CJM ;
Gillespie, JW ;
Yi, YJ ;
Chandramouli, GVR ;
Perlmutter, MA ;
Gathright, Y ;
Erickson, HS ;
Georgevich, L ;
Tangrea, MA ;
Duray, PH ;
González, S ;
Velasco, A ;
Linehan, WM ;
Matusik, RJ ;
Price, DK ;
Figg, WD ;
Emmert-Buck, MR ;
Chuaqui, RF .
CLINICAL CANCER RESEARCH, 2005, 11 (19) :6823-6834
[8]   The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration [J].
Bian, D ;
Mahanivong, C ;
Yu, J ;
Frisch, SM ;
Pan, ZK ;
Ye, RD ;
Huang, S .
ONCOGENE, 2006, 25 (15) :2234-2244
[9]   A comparison of prostate cancer cell transcriptomes in 2D monoculture vs 3D xenografts identify consistent gene expression alterations associated with tumor microenvironments [J].
Brady, Lauren ;
da Costa, Rui M. Gil ;
Coleman, Ilsa M. ;
Matson, Clinton K. ;
Risk, Michael C. ;
Coleman, Roger T. ;
Nelson, Peter S. .
PROSTATE, 2020, 80 (06) :491-499
[10]   MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins [J].
Calvo, Sarah E. ;
Clauser, Karl R. ;
Mootha, Vamsi K. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D1251-D1257