A machine learning model using echocardiographic myocardial strain to detect myocardial ischemia

被引:0
作者
Zheng, Bo [1 ,2 ]
Liu, Yaokun [1 ]
Zhang, Jingyi [3 ]
Ma, Terry T. [4 ]
Zhou, Yun [1 ,5 ]
Chen, Yongkai [4 ]
Yang, Ying [1 ,2 ]
Ma, Wei [1 ,2 ]
Fan, Fangfang [1 ,2 ]
Jia, Jia [1 ,2 ]
Zhang, Yan [1 ,2 ,6 ,7 ]
Li, Jianping [1 ,2 ,6 ,7 ]
Zhong, Wenxuan [4 ]
机构
[1] Peking Univ First Hosp, Dept Cardiol, Beijing, Peoples R China
[2] Peking Univ First Hosp, Inst Cardiovasc Dis, Beijing, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Math Sci, Beijing, Peoples R China
[4] Univ Georgia, Dept Stat, Athens 30602, GA USA
[5] Zhejiang Univ, Affiliated Hosp 1, Dept Anesthesia, Sch Med, Hangzhou, Peoples R China
[6] Peking Univ, State Key Lab Vasc Homeostasis & Remodeling, Beijing, Peoples R China
[7] Peking Univ, NHC, Key Lab Cardiovasc Mol Biol & Regulatory Peptides, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Machine learning; Ensemble learning; Echocardiographic myocardial strain; Myocardial ischemia; Coronary angiography-derived fractional flow reserve; FRACTIONAL FLOW RESERVE; PERCUTANEOUS CORONARY INTERVENTION; GLOBAL LONGITUDINAL STRAIN; 5-YEAR FOLLOW-UP; ANGIOGRAPHY; HEART; PCI; REVASCULARIZATION; COMMITTEE;
D O I
10.1007/s11739-025-03968-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Coronary functional assessment plays a critical role in guiding decisions regarding coronary revascularization. Traditional methods for evaluating functional myocardial ischemia, such as invasive procedures or those involving radiation, have their limitations. Echocardiographic myocardial strain has emerged as a non-invasive and convenient indicator. However, the interpretation of strain values can be subject to inter-operator variability. Artificial intelligence (AI) and machine learning techniques may promise to reduce the variability. By training AI algorithms on a diverse range of echocardiographic data, including strain values, and correlating them with ischemia, it may be possible to develop a robust and automated diagnostic tool. This study aims to provide a non-invasive and effective solution for automated myocardial ischemia detection that can be used in clinical practice. To construct the machine learning model, we used an automatic left ventricular endocardium tracing tool to extract myocardial strain data and integrated it with six clinical features. A coronary angiography-derived fractional flow reserve (caFFR) <= 0.80 was defined as the indicator of myocardial ischemia. A total of 636 suspected coronary artery disease subjects were enrolled in this pilot study, where 282 cases (44.3%) had myocardial ischemia. These subjects were randomly divided into training (n = 508) and testing (n = 128) sets at a 4:1. Using ensemble-learning algorithms to train and optimize the model, its diagnostic performance versus caFFR was diagnostic accuracy 85.9%, sensitivity 88.9%, specificity 83.1%, positive predictive value 83.6%, negative predictive value 88.5%. The optimized model achieved an area under the receiver operating characteristic curve (AUC) of 0.915 (95% confidence interval [CI] 0.862-0.968). Our machine learning prototype model based on echocardiographic myocardial strain shows promising results in detecting myocardial ischemia. Further studies are needed to validate its robustness and generalizability on larger patient populations.Graphical AbstractSummary of the machine learning model for detecting myocardial ischemia based on echocardiographic myocardial strain. CAD coronary artery disease, caFFR coronary angiography-derived fractional flow reserve, AUC area under the receiver operating characteristic curve
引用
收藏
页码:1425 / 1436
页数:12
相关论文
共 44 条
[1]   Resting Left Ventricular Global Longitudinal Strain to Identify Silent Myocardial Ischemia in Asymptomatic Patients with Diabetes Mellitus [J].
Albenque, Gregoire ;
Rusinaru, Dan ;
Bellaiche, Manon ;
Di Lena, Chloe ;
Gabrion, Paul ;
Delpierre, Quentin ;
Malaquin, Dorothee ;
Tribouilloy, Christophe ;
Bohbot, Yohann .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2022, 35 (03) :258-266
[2]   Optimal medical therapy with or without PCI for stable coronary disease [J].
Boden, William E. ;
O'Rourke, Robert A. ;
Teo, Koon K. ;
Hartigan, Pamela M. ;
Maron, David J. ;
Kostuk, William J. ;
Knudtson, Merril ;
Dada, Marcin ;
Casperson, Paul ;
Harris, Crystal L. ;
Chaitman, Bernard R. ;
Shaw, Leslee ;
Gosselin, Gilbert ;
Nawaz, Shah ;
Title, Lawrence M. ;
Gau, Gerald ;
Blaustein, Alvin S. ;
Booth, David C. ;
Bates, Eric R. ;
Spertus, John A. ;
Berman, Daniel S. ;
Mancini, G. B. John ;
Weintraub, William S. ;
Boden, W. ;
O'Rourke, R. ;
Teo, K. ;
Hartigan, P. ;
Weintraub, W. ;
Maron, D. ;
Mancini, J. ;
Weintraub, W. ;
Boden, W. ;
O'Rourke, R. ;
Teo, K. ;
Hartigan, P. ;
Knudtson, M. ;
Maron, D. ;
Bates, E. ;
Blaustein, A. ;
Booth, D. ;
Carere, R. ;
Ellis, S. ;
Gosselin, G. ;
Gau, G. ;
Jacobs, A. ;
King, S., III ;
Kostuk, W. ;
Harris, C. ;
Spertus, J. ;
Peduzzi, P. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (15) :1503-1516
[3]   Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart - A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association [J].
Cerqueira, MD ;
Weissman, NJ ;
Dilsizian, V ;
Jacobs, AK ;
Kaul, S ;
Laskey, WK ;
Pennell, DJ ;
Rumberger, JA ;
Ryan, T ;
Verani, MS .
CIRCULATION, 2002, 105 (04) :539-542
[4]  
Chamberlain Robert, 2021, Australas J Ultrasound Med, V24, P48, DOI [10.1002/ajum.12229, 10.1002/ajum.12229]
[5]  
Chu M, 2023, JACC-ASIA, V3, P1, DOI [10.1016/j.jacasi.2022.12.005, 10.1016/j.jacasi.2022.12.005]
[6]   Non-invasive imaging in coronary syndromes: recommendations of the European Association of Cardiovascular Imaging and the American Society of Echocardiography, in collaboration with the American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance [J].
Edvardsen, Thor ;
Asch, Federico M. ;
Davidson, Brian ;
Delgado, Victoria ;
DeMaria, Anthony ;
Dilsizian, Vasken ;
Gaemperli, Oliver ;
Garcia, Mario J. ;
Kamp, Otto ;
Lee, Daniel C. ;
Neglia, Danilo ;
Neskovic, Aleksandar N. ;
Pellikka, Patricia A. ;
Plein, Sven ;
Sechtem, Udo ;
Shea, Elaine ;
Sicari, Rosa ;
Villines, Todd C. ;
Lindner, Jonathan R. ;
Popescu, Bogdan A. .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2022, 23 (02) :E6-E33
[7]   Clinical Applications of Echo Strain Imaging: a Current Appraisal [J].
Fava, Agostino M. ;
Meredith, Dane ;
Desai, Milind Y. .
CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE, 2019, 21 (10)
[8]   Accuracy of Fractional Flow Reserve Derived From Coronary Angiography [J].
Fearon, William F. ;
Achenbach, Stephan ;
Engstrom, Thomas ;
Assali, Abid ;
Shlofmitz, Richard ;
Jeremias, Allen ;
Fournier, Stephane ;
Kirtane, Ajay J. ;
Kornowski, Ran ;
Greenberg, Gabriel ;
Jubeh, Rami ;
Kolansky, Daniel M. ;
McAndrew, Thomas ;
Dressler, Ovidiu ;
Maehara, Akiko ;
Matsumura, Mitsuaki ;
Leon, Martin B. ;
De Bruyne, Bernard .
CIRCULATION, 2019, 139 (04) :477-484
[9]   Deep learning interpretation of echocardiograms [J].
Ghorbani, Amirata ;
Ouyang, David ;
Abid, Abubakar ;
He, Bryan ;
Chen, Jonathan H. ;
Harrington, Robert A. ;
Liang, David H. ;
Ashley, Euan A. ;
Zou, James Y. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[10]   Echocardiographic Assessment of Myocardial Strain [J].
Gorcsan, John, III ;
Tanaka, Hidekazu .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 58 (14) :1401-1413