Data-Driven Economic Predictive Control of Wastewater Treatment Process with Input-Output Koopman Operator

被引:1
作者
Han, Minghao [1 ]
Yao, Jingshi [1 ]
Law, Adrian Wing-Keung [2 ,3 ]
Yin, Xunyuan [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, 62 Nanyang Dr, Singapore 637459, Singapore
[2] Nanyang Technol Univ, Nanyang Environm & Water Res Inst NEWRI, Environm Proc Modelling Ctr, 1 CleanTech Loop, Singapore 637141, Singapore
[3] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore
来源
2024 AMERICAN CONTROL CONFERENCE, ACC 2024 | 2024年
基金
新加坡国家研究基金会;
关键词
MODEL; SYSTEMS; STATE;
D O I
10.23919/ACC60939.2024.10644329
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we address the problem of the economic operation of wastewater treatment plants by proposing a data-driven economic predictive control approach. First, we propose a deep input-output Koopman modeling framework, which is able to predict the overall economic operational cost for the water treatment process based on input data and partial state measurements. Subsequently, based on the learned model, a convex economic model predictive control (EMPC) strategy is developed. This control strategy improves the overall operational performance in a computationally efficient manner. The simulation results validate the effectiveness of our proposed approach and demonstrate its superiority over a benchmark EMPC method.
引用
收藏
页码:3025 / 3030
页数:6
相关论文
共 24 条
[1]  
Alex J., 2008, Benchmark Simul. Model, V1, P1
[2]   Deep learning in wastewater treatment: a critical review [J].
Alvi, Maira ;
Batstone, Damien ;
Mbamba, Christian Kazadi ;
Keymer, Philip ;
French, Tim ;
Ward, Andrew ;
Dwyer, Jason ;
Cardell-Oliver, Rachel .
WATER RESEARCH, 2023, 245
[3]   A tutorial review of economic model predictive control methods [J].
Ellis, Matthew ;
Durand, Helen ;
Christofides, Panagiotis D. .
JOURNAL OF PROCESS CONTROL, 2014, 24 (08) :1156-1178
[4]   Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network [J].
Han, Hong-Gui ;
Qiao, Jun-Fei ;
Chen, Qi-Li .
CONTROL ENGINEERING PRACTICE, 2012, 20 (04) :465-476
[5]  
Han M., 2022, INT C LEARN REPR
[6]   Robust Learning and Control of Time-Delay Nonlinear Systems With Deep Recurrent Koopman Operators [J].
Han, Minghao ;
Li, Zhaojian ;
Yin, Xiang ;
Yin, Xunyuan .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (03) :4675-4684
[7]  
Harja Gabriel, 2016, 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). Proceedings, P1, DOI 10.1109/AQTR.2016.7501329
[8]   The COST benchmark simulation model - current state and future perspective [J].
Jeppsson, U ;
Pons, MN .
CONTROL ENGINEERING PRACTICE, 2004, 12 (03) :299-304
[9]   Hamiltonian systems and transformations in Hilbert space [J].
Koopman, BO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1931, 17 :315-318
[10]   Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control [J].
Korda, Milan ;
Mezic, Igor .
AUTOMATICA, 2018, 93 :149-160