Efficient few-shot medical image segmentation via self-supervised variational autoencoder

被引:0
作者
Zhou, Yanjie [1 ]
Zhou, Feng [1 ]
Xi, Fengjun [2 ,3 ]
Liu, Yong [1 ]
Peng, Yun [3 ]
Carlson, David E. [4 ,5 ]
Tu, Liyun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Dept Radiol, Beijing 100070, Peoples R China
[3] Capital Med Univ, Beijing Childrens Hosp, Natl Ctr Childrens Hlth, MOE Key Lab Major Dis Children,Dept Radiol, Beijing 100045, Peoples R China
[4] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
[5] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Medical image segmentation; Few-shot learning; Image reconstruction; Variational autoencoder;
D O I
10.1016/j.media.2025.103637
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot medical image segmentation typically uses a joint model for registration and segmentation. The registration model aligns a labeled atlas with unlabeled images to form initial masks, which are then refined by the segmentation model. However, inevitable spatial misalignments during registration can lead to inaccuracies and diminished segmentation quality. To address this, we developed EFS-MedSeg, an end-to-end model using two labeled atlases and few unlabeled images, enhanced by data augmentation and self-supervised learning. Initially, EFS-MedSeg applies a 3D random regional switch strategy to augment atlases, thereby enhancing supervision in segmentation tasks. This not only introduces variability to the training data but also enhances the model's ability to generalize and prevents overfitting, resulting in natural and smooth label boundaries. Following this, we use a variational autoencoder for a weighted reconstruction task, focusing the model's attention on areas with lower Dice scores to ensure accurate segmentation that conforms to the atlas image's shape and structural appearance. Moreover, we introduce a self-contrastive module aimed at improving feature extraction, guided by anatomical structure priors, thus enhancing the model's convergence and segmentation accuracy. Results on multi-modal medical image datasets show that EFS-MedSeg achieves performance comparable to fully-supervised methods. Moreover, it consistently surpasses the second-best method in Dice score by 1.4%, 9.1%, and 1.1% on the OASIS, BCV, and BCH datasets, respectively, highlighting its robustness and adaptability across diverse datasets. The source code will be made publicly available at: https://github.com/NoviceFodder/EFS-MedSeg.
引用
收藏
页数:13
相关论文
共 64 条
[1]   Data Augmentation for Low-Level Vision: CutBlur and Mixture-of-Augmentation [J].
Ahn, Namhyuk ;
Yoo, Jaejun ;
Sohn, Kyung-Ah .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (06) :2041-2059
[2]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[3]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[4]  
Avants B. B., 2009, Insight J, V2, P1, DOI [10.54294/uvnhin, DOI 10.54294/UVNHIN]
[5]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[6]   Low-shot learning and class imbalance: a survey [J].
Billion Polak, Preston ;
Prusa, Joseph D. ;
Khoshgoftaar, Taghi M. .
JOURNAL OF BIG DATA, 2024, 11 (01)
[7]   UniverSeg: Universal Medical Image Segmentation [J].
Butoi, Victor Ion ;
Ortiz, Jose Javier Gonzalez ;
Ma, Tianyu ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian V. .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, :21381-21394
[8]   TransMorph: Transformer for unsupervised medical image registration [J].
Chen, Junyu ;
Frey, Eric C. ;
He, Yufan ;
Segars, William P. ;
Li, Ye ;
Du, Yong .
MEDICAL IMAGE ANALYSIS, 2022, 82
[9]   Few-Shot Medical Image Segmentation via Generating Multiple Representative Descriptors [J].
Cheng, Ziming ;
Wang, Shidong ;
Xin, Tong ;
Zhou, Tao ;
Zhang, Haofeng ;
Shao, Ling .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (06) :2202-2214
[10]  
DeVries T, 2017, Arxiv, DOI arXiv:1708.04552