BORELL-BRASCAMP-LIEB INEQUALITIES IN SPACES WITH BITRIANGULAR LAWS OF COMPOSITION, WITH APPLICATIONS

被引:0
作者
Wu, Denghui [1 ]
Wang, Chen-Lu [1 ]
Bu, Zhen-Hui [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Peoples R China
基金
中国国家自然科学基金;
关键词
convex body; Borell-Brascamp-Lieb inequality; Pr & eacute; kopa-Leindler inequality; Brunn's theorem; bitriangular composition law; and phrases; BRUNN-MINKOWSKI;
D O I
10.1216/rmj.2025.55.289
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Borell-Brascamp-Lieb inequalities and Brunn's concavity principle in spaces with bitriangular laws of composition. This generalization has as an interesting particular example the Heisenberg group Hn. As an application, we prove some Brunn-Minkowski-type inequalities in Hn, including an isomorphic version of the conjectured Brunn-Minkowski inequality in Hn, which gives a positive answer to a modified conjecture.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 15 条
[1]  
Artstein-Avidan S., 2015, Math. Surv. Monogr., V202
[2]   Geometric inequalities on Heisenberg groups [J].
Balogh, Zoltan M. ;
Kristaly, Alexandru ;
Sipos, Kinga .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[3]   Sub-Riemannian interpolation inequalities [J].
Barilari, Davide ;
Rizzi, Luca .
INVENTIONES MATHEMATICAE, 2019, 215 (03) :977-1038
[4]  
Bobkov S. G., 2011, J. Math. Sci..N.Y., V179, P2
[5]  
Borell C., 1975, Period. Math. Hungar, V6, P111, DOI [10.1007/BF02018814, DOI 10.1007/BF02018814]
[6]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[7]  
Dinghas A., 1957, Math.Zeitschr, V68, P111, DOI DOI 10.1007/BF01160335
[8]  
He GQ, 2020, ANAL MATH PHYS, V10, DOI 10.1007/s13324-020-00367-2
[9]  
Henstock R., 1953, P LOND MATH SOC, V3, P182, DOI [10.1112/plms/s3-3.1.182, DOI 10.1112/PLMS/S3-3.1.182]
[10]  
LEINDLER L, 1972, ACTA SCI MATH, V33, P217