Using machine learning for personalized prediction of longitudinal coronavirus disease 2019 vaccine responses in transplant recipients

被引:4
作者
Azarfar, Ghazal [1 ]
Sun, Yingji [1 ]
Pasini, Elisa [1 ]
Sidhu, Aman [1 ,2 ]
Brudno, Michael [1 ,2 ]
Humar, Atul [1 ,2 ]
Kumar, Deepali [1 ,2 ]
Bhat, Mamatha [1 ,2 ]
Ferreira, Victor H. [1 ,2 ]
机构
[1] Univ Hlth Network, Ajmera Transplant Ctr, Toronto, ON, Canada
[2] Univ Hlth Network, Toronto Gen Hosp Res Inst TGHRI, Toronto, ON, Canada
关键词
machine learning; solid organ transplantation; antibodies; vaccination; COVID-19;
D O I
10.1016/j.ajt.2024.11.033
中图分类号
R61 [外科手术学];
学科分类号
摘要
The coronavirus disease 2019 pandemic has underscored the importance of vaccines, especially for immunocompromised populations like solid organ transplant recipients, who often have weaker immune responses. The purpose of this study was to compare deep learning architectures for predicting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine responses 12 months postvaccination in this high-risk group. Using data from 303 solid organ transplant recipients from a Canadian multicenter cohort, models were developed to forecast anti-receptor-binding domain antibody levels. The study compared traditional machine learning models-logistic regression, epsilon-support vector regression, random forest regressor, and gradient boosting regressor-and deep learning architectures, including long short-term memory (LSTM), recurrent neural networks, and a novel model, routed LSTM. This new model combines capsule networks with LSTM to reduce the need for large data sets. Demographic, clinical, and transplant-specific data, along with longitudinal antibody measurements, were incorporated into the models. The routed LSTM performed best, achieving a mean square error of 0.02 +/- 0.02 and a Pearson correlation coefficient of 0.79 +/- 0.24, outperforming all other models. Key factors influencing vaccine response included age, immunosuppression, breakthrough infection, body mass index, sex, and transplant type. These findings suggest that artificial intelligence could be a valuable tool in tailoring vaccine strategies, improving health outcomes for vulnerable transplant recipients.
引用
收藏
页码:1107 / 1116
页数:10
相关论文
共 38 条
[1]   Predicting a Positive Antibody Response After 2 SARS-CoV-2 mRNA Vaccines in Transplant Recipients: A Machine Learning Approach With External Validation [J].
Alejo, Jennifer L. ;
Mitchell, Jonathan ;
Chiang, Teresa P-Y ;
Chang, Amy ;
Abedon, Aura T. ;
Werbel, William A. ;
Boyarsky, Brian J. ;
Zeiser, Laura B. ;
Avery, Robin K. ;
Tobian, Aaron A. R. ;
Levan, Macey L. ;
Warren, Daniel S. ;
Massie, Allan B. ;
Moore, Linda W. ;
Guha, Ashrith ;
Huang, Howard J. ;
Knight, Richard J. ;
Gaber, Ahmed Osama ;
Ghobrial, Rafik Mark ;
Garonzik-Wang, Jacqueline M. ;
Segev, Dorry L. ;
Bae, Sunjae .
TRANSPLANTATION, 2022, 106 (10) :E452-E460
[2]   A deep learning framework for personalised dynamic diagnosis of graft fibrosis after liver transplantation: a retrospective, single Canadian centre, longitudinal study [J].
Azhie, Amirhossein ;
Sharma, Divya ;
Sheth, Priya ;
Qazi-Arisar, Fakhar Ali ;
Zaya, Rita ;
Naghibzadeh, Maryam ;
Duan, Kai ;
Fischer, Sandra ;
Patel, Keyur ;
Tsien, Cynthia ;
Selzner, Nazia ;
Lilly, Leslie ;
Jaeckel, Elmar ;
Xu, Wei ;
Bhat, Mamatha .
LANCET DIGITAL HEALTH, 2023, 5 (07) :e458-e466
[3]   Respiratory Viruses in Solid Organ Transplant Recipients [J].
Bitterman, Roni ;
Kumar, Deepali .
VIRUSES-BASEL, 2021, 13 (11)
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[6]   Predicting vaccine effectiveness against severe COVID-19 over time and against variants: a meta-analysis [J].
Cromer, Deborah ;
Steain, Megan ;
Reynaldi, Arnold ;
Schlub, Timothy E. ;
Khan, Shanchita R. ;
Sasson, Sarah C. ;
Kent, Stephen J. ;
Khoury, David S. ;
Davenport, Miles P. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[7]   Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis [J].
Cromer, Deborah ;
Steain, Megan ;
Reynaldi, Arnold ;
Schlub, Timothy E. ;
Wheatley, Adam K. ;
Juno, Jennifer A. ;
Kent, Stephen J. ;
Triccas, James A. ;
Khoury, David S. ;
Davenport, Miles P. .
LANCET MICROBE, 2022, 3 (01) :E52-E61
[8]   The antigenic anatomy of SARS-CoV-2 receptor binding domain [J].
Dejnirattisai, Wanwisa ;
Zhou, Daming ;
Ginn, Helen M. ;
Duyvesteyn, Helen M. E. ;
Supasa, Piyada ;
Case, James Brett ;
Zhao, Yuguang ;
Walter, Thomas S. ;
Mentzer, Alexander J. ;
Liu, Chang ;
Wang, Beibei ;
Paesen, Guido C. ;
Slon-Campos, Jose ;
Lopez-Camacho, Cesar ;
Kafai, Natasha M. ;
Bailey, Adam L. ;
Chen, Rita E. ;
Ying, Baoling ;
Thompson, Craig ;
Bolton, Jai ;
Fyfe, Alex ;
Gupta, Sunetra ;
Tan, Tiong Kit ;
Gilbert-Jaramillo, Javier ;
James, William ;
Knight, Michael ;
Carroll, Miles W. ;
Skelly, Donal ;
Dold, Christina ;
Peng, Yanchun ;
Levin, Robert ;
Dong, Tao ;
Pollard, Andrew J. ;
Knight, Julian C. ;
Klenerman, Paul ;
Temperton, Nigel ;
Hall, David R. ;
Williams, Mark A. ;
Paterson, Neil G. ;
Bertram, Felicity K. R. ;
Siebert, C. Alistair ;
Clare, Daniel K. ;
Howe, Andrew ;
Radecke, Julika ;
Song, Yun ;
Townsend, Alain R. ;
Huang, Kuan-Ying A. ;
Fry, Elizabeth E. ;
Mongkolsapaya, Juthathip ;
Diamond, Michael S. .
CELL, 2021, 184 (08) :2183-+
[9]   Evaluation of Three Anti-SARS-CoV-2 Serologic Immunoassays for Post-Vaccine Response [J].
Di Meo, Ashley ;
Miller, Jessica J. ;
Fabros, Anselmo ;
Brinc, Davor ;
Hall, Victoria ;
Pinzon, Natalia ;
Ierullo, Matthew ;
Ku, Terrance ;
Ferreira, Victor H. ;
Kumar, Deepali ;
Pasic, Maria D. ;
Kulasingam, Vathany .
JOURNAL OF APPLIED LABORATORY MEDICINE, 2022, 7 (01) :57-65
[10]   Multi-Channel LSTM-Capsule Autoencoder Network for Anomaly Detection on Multivariate Data [J].
Elhalwagy, Ayman ;
Kalganova, Tatiana .
APPLIED SCIENCES-BASEL, 2022, 12 (22)