Geodesic motion of a test particle around a noncommutative Schwarzchild Anti-de Sitter black hole

被引:0
作者
Larbi, Mohamed Aimen [1 ,2 ]
Zaim, Slimane [2 ]
Touati, Abdellah [3 ]
机构
[1] Univ Batna 1, Lab Phys Radiat & its Interact Matter LRPRIM, Batna 05000, Algeria
[2] Univ Batna 1, Fac Matter Sci, Dept Phys, Batna 05000, Algeria
[3] Univ Bouira, Fac Sci & Appl Sci, Dept Phys, Bouira, Algeria
关键词
Non-commutative geometry; Schwarzschild Anti-de Sitter black hole; effective potential; geodesic equation; periastron advance; COSMOLOGICAL CONSTANT; GAUGE-THEORY; GEOMETRY; ORBITS; GRAVITY; FIELD; MODEL;
D O I
10.1142/S0217732325500609
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we derive non-commutative corrections to the Schwarzschild-Anti-de Sitter solution up to the first and second orders of the noncommutative parameter Theta. Additionally, we obtain the corresponding deformed effective potentials and the non-commutative geodesic equations for massive particles. Through the analysis of time-like noncommutative geodesics for various values of Theta, we demonstrate that the circular geodesic orbits of the noncommutative Schwarzschild-Anti-de Sitter black hole exhibit greater stability compared to those of the commutative one. Furthermore, we derive corrections to the perihelion deviation angle per revolution as a function of Theta. By applying this result to the perihelion precession of Mercury and utilizing experimental data, we establish a new upper bound on the noncommutative parameter, estimated to be on the order of 10-66m2.
引用
收藏
页数:15
相关论文
共 75 条
[1]  
Alavi SA, 2009, Arxiv, DOI arXiv:0909.1688
[2]   Orbital precession due to central-force perturbations [J].
Adkins, Gregory S. ;
McDonnell, Jordan .
PHYSICAL REVIEW D, 2007, 75 (08)
[3]  
Akhshabi S., 2006, Preprints
[4]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[5]   Beyond the geodesic approximation: Conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole [J].
Barack, Leor ;
Sago, Norichika .
PHYSICAL REVIEW D, 2011, 83 (08)
[6]   A dynamical system's approach to Schwarzschild null geodesics [J].
Belbruno, Edward ;
Pretorius, Frans .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (19)
[7]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[8]   Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation [J].
Benczik, S ;
Chang, LN ;
Minic, D ;
Okamura, N ;
Rayyan, S ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 66 (02) :1
[9]   Particles and Scalar Waves in Noncommutative Charged Black Hole Spacetime [J].
Bhar, Piyali ;
Rahaman, Farook ;
Biswas, Ritabrata ;
Mondal, U. F. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 64 (01) :1-8
[10]   THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA [J].
Bovy, Jo ;
Allende Prieto, Carlos ;
Beers, Timothy C. ;
Bizyaev, Dmitry ;
da Costa, Luiz N. ;
Cunha, Katia ;
Ebelke, Garrett L. ;
Eisenstein, Daniel J. ;
Frinchaboy, Peter M. ;
Perez, Ana Elia Garcia ;
Girardi, Leo ;
Hearty, Fred R. ;
Hogg, David W. ;
Holtzman, Jon ;
Maia, Marcio A. G. ;
Majewski, Steven R. ;
Malanushenko, Elena ;
Malanushenko, Viktor ;
Meszaros, Szabolcs ;
Nidever, David L. ;
O'Connell, Robert W. ;
O'Donnell, Christine ;
Oravetz, Audrey ;
Pan, Kaike ;
Rocha-Pinto, Helio J. ;
Schiavon, Ricardo P. ;
Schneider, Donald P. ;
Schultheis, Mathias ;
Skrutskie, Michael ;
Smith, Verne V. ;
Weinberg, David H. ;
Wilson, John C. ;
Zasowski, Gail .
ASTROPHYSICAL JOURNAL, 2012, 759 (02)