Analytical solution to the Lippmann-Schwinger equation in the spherical space

被引:0
作者
de Jesus, Anderson L.
Fortiny, Rafael M.
Schmidt, Alexandre G. M.
机构
[1] Univ Fed Fluminense, Inst Ciencias Exatas, BR-27213145 Volta Redonda, RJ, Brazil
[2] Univ Fed Fluminense, Programa Pos Grad Fis, Inst Fis, BR-24210346 Niteroi, RJ, Brazil
关键词
Laplace-Beltrami operator; Lippmann-Schwinger equation; Boundary-wall potential; Thin-layer method; Spherical space; QUANTUM; SCATTERING;
D O I
10.1016/j.aop.2025.170048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this work is to obtain an analytical solution to the Lippmann-Schwinger equation for a scalar particle, bounded in a two-dimensional space with constant positive curvature, called the spherical space. Making use of the thin-layer quantization method, we present the free particle wave function solving the Schr & ouml;dinger equation on the spherical space using the Laplace-Beltrami operator. We use the Green's function on the spherical space as the kernel in the Lippmann-Schwinger equation and solve it exactly for the boundary-wall potential, modeled as Dirac delta distributions, considering single, double and finding the generalized result for multiple consecutive barriers. The probability densities are presented graphically.
引用
收藏
页数:13
相关论文
共 50 条
[1]  
Anderson JW., 2005, Hyperbolic Geometry
[2]  
[Anonymous], 2003, Geometry, Topology and Physics, DOI [10.1201/9781315275826, DOI 10.1201/9781315275826]
[3]   Quantum scattering by a spherical barrier with an arbitrary coupling strength [J].
Azado, Pedro C. ;
Maioli, Alan C. ;
Schmidt, Alexandre G. M. .
PHYSICA SCRIPTA, 2021, 96 (08)
[4]   The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach [J].
Carinena, Jose F. ;
Ranada, Manuel F. ;
Santander, Mariano .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
[5]  
Carroll S.M., 2022, Spacetime and Geometry: An Introduction to General Relativity, Vsixth
[6]   Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry [J].
Cohl, H. S. ;
Kalnins, E. G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (14)
[7]  
Cohl HS, 2018, SYMMETRY INTEGR GEOM, V14, DOI [10.3842/sigma.2018.136, 10.3842/SIGMA.2018.136]
[8]   Fundamental Solution of Laplace's Equation in Hyperspherical Geometry [J].
Cohl, Howard S. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
[9]  
da Costa R. C. T., 1986, European Journal of Physics, V7, P269, DOI 10.1088/0143-0807/7/4/010
[10]   QUANTUM-MECHANICS OF A CONSTRAINED PARTICLE [J].
DACOSTA, RCT .
PHYSICAL REVIEW A, 1981, 23 (04) :1982-1987