Point Condensation ofMaximizers for Trudinger-Moser Inequalities on Scaling Parameter

被引:0
作者
Hashizume, Masato [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Toyonaka 5608531, Japan
关键词
Asymptotic expansion; Trudinger-Moser inequality; two dimension; LEAST-ENERGY SOLUTIONS; EXTREMAL-FUNCTIONS; UNBOUNDED-DOMAINS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study asymptotic behavior of maximizers for the critical Trudinger-Moser inequalities with a scaling parameter. In particular, we show the point condensation of the maximizers. We also clarify the location of the peak of maximizers in the critical case, as well as in the subcritical case. The location of the peak of maximizer depends on geometric properties of a bounded domain.
引用
收藏
页码:467 / 505
页数:39
相关论文
共 21 条
[1]   Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality [J].
Adimurthi ;
Druet, O .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :295-322
[2]  
CARLESON L, 1986, B SCI MATH, V110, P113
[3]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[4]  
del Pino M, 1999, INDIANA U MATH J, V48, P883
[5]   EXTREMAL-FUNCTIONS FOR THE TRUDINGER-MOSER INEQUALITY IN 2 DIMENSIONS [J].
FLUCHER, M .
COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (03) :471-497
[6]  
Gilbarg D., 2001, CLASSICS MATH
[7]   Asymptotic properties of critical points for subcritical Trudinger-Moser functional [J].
Hashizume, Masato .
ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
[8]   A sharp Trudinger-Moser type inequality for unbounded domains in Rn [J].
Li, Yuxiang ;
Ruf, Bernhard .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) :451-480
[9]   LARGE-AMPLITUDE STATIONARY SOLUTIONS TO A CHEMOTAXIS SYSTEM [J].
LIN, CS ;
NI, WM ;
TAKAGI, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 72 (01) :1-27
[10]  
Lions Pierre-Louis, 1985, I. Rev. Mat. Iberoamericana, V1, P145, DOI [10.4171/RMI/6, DOI 10.4171/RMI/6]