KansformerEPI: a deep learning framework integrating KAN and transformer for predicting enhancer-promoter interactions

被引:0
作者
Zhang, Tianjiao [1 ]
Shao, Saihong [1 ]
Zhang, Hongfei [1 ]
Zhao, Zhongqian [1 ]
Zhao, Xingjie [1 ]
Zhang, Xiang [1 ]
Wang, Zhenxing [1 ]
Wang, Guohua [1 ,2 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, 26 Hexing Rd, Harbin 150040, Peoples R China
[2] Harbin Inst Technol, Fac Comp, 92 West Da Zhi St, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
enhancer-promoter interactions; KAN; transformer; deep learning; REGULATORY ELEMENTS; GENOME; GENES;
D O I
10.1093/bib/bbaf272
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Enhancer-promoter interaction (EPI) is a critical component of gene regulation. Accurately predicting EPIs across diverse cell types can advance our understanding of the molecular mechanisms behind transcriptional regulation and provide valuable insights into the onset and progression of related diseases. At present, large-scale genome-wide EPI predictions typically rely on computational approaches. However, most of these methods focus on predicting EPIs within a single cell line and lack a global perspective encompassing multiple cell lines. Furthermore, they often fail to fully account for the nonlinear relationships between features, leading to suboptimal prediction accuracy. In this study, we propose KansformerEPI, a global EPI prediction model designed for multiple cell lines. The model is built on Kansformer, an encoder that integrates KAN and Transformer, effectively capturing the nonlinear relationships among various epigenetic and sequence features. We utilized KansformerEPI to achieve cross-tissue prediction of EPIs across different cell types. This approach enhances the model's scalability, eliminating the complexity of designing separate prediction models for individual tissues. As a result, our model is applicable to various tissues, thereby reducing dependency on extensive datasets. Experimental results demonstrate that KansformerEPI surpasses existing methods such as TransEPI, TargetFinder, and SPEID in both accuracy and stability of EPI predictions across datasets including HMEC, IMR90, K562, and NHEK.
引用
收藏
页数:13
相关论文
共 35 条
[1]   DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach [J].
Agarwal, Aman ;
Chen, Li .
BIOINFORMATICS, 2023, 39 (01)
[2]   Capturing large genomic contexts for accurately predicting enhancer-promoter interactions [J].
Chen, Ken ;
Zhao, Huiying ;
Yang, Yuedong .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
[3]  
Chen Y., 2024, IEEE J Biomed Health Inform, V29, DOI [10.1109/JBHI.2024.3450669, DOI 10.1109/JBHI.2024.3450669]
[4]   Topological domains in mammalian genomes identified by analysis of chromatin interactions [J].
Dixon, Jesse R. ;
Selvaraj, Siddarth ;
Yue, Feng ;
Kim, Audrey ;
Li, Yan ;
Shen, Yin ;
Hu, Ming ;
Liu, Jun S. ;
Ren, Bing .
NATURE, 2012, 485 (7398) :376-380
[5]   An oestrogen-receptor-α-bound human chromatin interactome [J].
Fullwood, Melissa J. ;
Liu, Mei Hui ;
Pan, You Fu ;
Liu, Jun ;
Xu, Han ;
Bin Mohamed, Yusoff ;
Orlov, Yuriy L. ;
Velkov, Stoyan ;
Ho, Andrea ;
Mei, Poh Huay ;
Chew, Elaine G. Y. ;
Huang, Phillips Yao Hui ;
Welboren, Willem-Jan ;
Han, Yuyuan ;
Ooi, Hong Sain ;
Ariyaratne, Pramila N. ;
Vega, Vinsensius B. ;
Luo, Yanquan ;
Tan, Peck Yean ;
Choy, Pei Ye ;
Wansa, K. D. Senali Abayratna ;
Zhao, Bing ;
Lim, Kar Sian ;
Leow, Shi Chi ;
Yow, Jit Sin ;
Joseph, Roy ;
Li, Haixia ;
Desai, Kartiki V. ;
Thomsen, Jane S. ;
Lee, Yew Kok ;
Karuturi, R. Krishna Murthy ;
Herve, Thoreau ;
Bourque, Guillaume ;
Stunnenberg, Hendrik G. ;
Ruan, Xiaoan ;
Cacheux-Rataboul, Valere ;
Sung, Wing-Kin ;
Liu, Edison T. ;
Wei, Chia-Lin ;
Cheung, Edwin ;
Ruan, Yijun .
NATURE, 2009, 462 (7269) :58-64
[6]   Elevated DKK1 expression is an independent unfavorable prognostic indicator of survival in head and neck squamous cell carcinoma [J].
Gao, Haihe ;
Li, Lisha ;
Xiao, Mang ;
Guo, Yongwei ;
Shen, Yi ;
Cheng, Lixin ;
Tang, Ming .
CANCER MANAGEMENT AND RESEARCH, 2018, 10 :5083-5089
[7]   EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species [J].
Gao, Tianshun ;
Qian, Jiang .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D58-D64
[8]  
Katoh Y, 2005, INT J ONCOL, V27, P275
[9]   REGULATORY ELEMENTS Metazoan promoters: emerging characteristics and insights into transcriptional regulation [J].
Lenhard, Boris ;
Sandelin, Albin ;
Carninci, Piero .
NATURE REVIEWS GENETICS, 2012, 13 (04) :233-245
[10]   TF-EPI: an interpretable enhancer-promoter interaction detection method based on Transformer [J].
Liu, Bowen ;
Zhang, Weihang ;
Zeng, Xin ;
Loza, Martin ;
Park, Sung-Joon ;
Nakai, Kenta .
FRONTIERS IN GENETICS, 2024, 15