Estimates of Some Coefficient Functionals for Close-to-Convex Functions

被引:1
作者
Trojnar-Spelina, Lucyna [1 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, Al Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 12期
关键词
close-to-convex function; coefficient problems; successive coefficients; bounds of the coefficient functionals; INVERSE;
D O I
10.3390/sym16121671
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For a given starlike function F alpha=z1-alpha z2, alpha is an element of[-1,1], the class C0(F alpha) is defined as follows: an analytic normalized function f belongs to C0(F alpha) if it satisfies Rezf '(z)F alpha(z)>0 in the open unit disk triangle. The condition defining this class can be rewritten in the following equivalent form Re{(1-alpha z2)f '(z)}>0, z is an element of triangle. The family C0(F alpha) is a subclass of the class of close-to-convex functions. The main aim of this paper is to maximize the modulus of a functional which is a linear combination with coefficients symmetric with respect to zero and is defined on the subfamily of C0(F alpha) of functions with a fixed second coefficient in its Taylor series expansion.
引用
收藏
页数:13
相关论文
共 23 条
[1]   THE LOGARITHMIC COEFFICIENT INEQUALITY FOR CLOSE-TO-CONVEX FUNCTIONS OF COMPLEX ORDER [J].
Caglar, Murat .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03) :951-959
[2]   On the third logarithmic coefficient in some subclasses of close-to-convex functions [J].
Cho, Nak Eun ;
Kowalczyk, Bogumila ;
Kwon, Oh Sang ;
Lecko, Adam ;
Sim, Young Jae .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
[3]   A general approach to the Fekete-Szego problem [J].
Choi, Jae Ho ;
Kim, Yong Chan ;
Sugawa, Toshiyuki .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) :707-727
[4]  
Goodman AW., 1978, INT J MATH MATH SCI, V1, P125
[5]  
Goodman AW., 1983, Univalent Functions
[6]  
Grenander U., 1958, TOEPLITZ FORMS THEIR
[7]  
Kaplan W., 1952, Michigan Math. J, V1, P169, DOI DOI 10.1307/MMJ/1028988895
[8]   The Fekete-Szego inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter [J].
Kowalczyk, Bogumila ;
Lecko, Adam .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[9]  
Lecko A., 1996, Folia Sci. Univ. Tech. Resov, V154, P73
[10]  
Lecko A., 1996, Folia Sci. Univ. Tech. Resov, V147, P35