A Memristor-Based Infrared Reservoir Computing System for Dynamic Target Perception With Spatial-Temporal Features

被引:0
作者
Xie, Yiduo [1 ]
Luo, Wenbo [2 ]
Zhao, Zebin [1 ]
Xie, Qin [1 ]
Wang, Jiejun [1 ]
Pan, Xinqiang [2 ]
Shuai, Yao [2 ]
Wu, Chuangui [2 ]
Zhang, Wanli [2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Integrated Circuit Sci & Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Device, Chengdu 611731, Peoples R China
[3] Univ Elect Scienceand Technol China, Chongqing Inst Microelect Ind Technol, Chongqing 400000, Peoples R China
关键词
Memristors; Hardware; Feature extraction; Artificial intelligence; Spatiotemporal phenomena; Reservoirs; Nonlinear dynamical systems; Internet of Things; Reservoir computing; Voltage; Memristor; pyroelectric sensor; reservoir computing (RC); spatial-temporal feature perception; CLASSIFICATION; SENSOR; MEMORY;
D O I
10.1109/TED.2025.3549386
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rapid expansion of the Internet of Things (IoT) necessitates unprecedented resource efficiency in sensor-edge hardware to implement artificial intelligence (AI). A memristor-based infrared reservoir computing (MIRC) system was proposed in this work, incorporating a physical mask, a pyroelectric infrared (PIR) sensor based on LiTaO3 (LT), and a memristor based on LiNiO3 (LN). The PIR sensor with the physical mask can encode spatiotemporal features into electrical signals with high data fidelity. Subsequently, the analog sensor signals can be directly fed to the delay-based memristor reservoir. It is worth mentioning that the memristor shows a large dynamic space with rich reservoir states and a nonlinear short-term memory effect, so that the spatiotemporal features of PIR signals can be mapped more finely to the conductance of the memristor. These advancements in memristor performance enhance the system's ability to process complex spatiotemporal data, allowing for the perception of targets with varying sizes, velocities, and distances, with results indicating a high distinction for each target. Compared to conventional methods, this approach significantly saves hardware resources, minimizes data transmission requirements, and simplifies backend algorithmic processing, providing a promising framework for advancing IoT technologies with integrated AI capabilities at the sensor edge.
引用
收藏
页码:2299 / 2304
页数:6
相关论文
共 33 条
[1]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[2]   Distributed synaptic modification in neural networks induced by patterned stimulation [J].
Bi, GQ ;
Poo, MM .
NATURE, 1999, 401 (6755) :792-796
[3]   In-sensor computing for machine vision [J].
Chai, Yang .
NATURE, 2020, 579 (7797) :32-33
[4]   Optoelectronic graded neurons for bioinspired in-sensor motion perception [J].
Chen, Jiewei ;
Zhou, Zheng ;
Kim, Beom Jin ;
Zhou, Yue ;
Wang, Zhaoqing ;
Wan, Tianqing ;
Yan, Jianmin ;
Kang, Jinfeng ;
Ahn, Jong-Hyun ;
Chai, Yang .
NATURE NANOTECHNOLOGY, 2023, 18 (08) :882-+
[5]   Hardware Neural Network using Hybrid Synapses via Transfer Learning: WOx Nano-Resistors and TiOx RRAM Synapse for Energy-Efficient Edge-AI Sensor [J].
Choi, Wooseok ;
Kwak, Myonghoon ;
Heo, Seongjae ;
Lee, Kyumin ;
Lee, Seungwoo ;
Hwang, Hyunsang .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
[6]   Reservoir computing using dynamic memristors for temporal information processing [J].
Du, Chao ;
Cai, Fuxi ;
Zidan, Mohammed A. ;
Ma, Wen ;
Lee, Seung Hwan ;
Lu, Wei D. .
NATURE COMMUNICATIONS, 2017, 8
[7]   Compressive classification of human motion using pyroelectric infrared sensors [J].
Guan, Qiuju ;
Li, Caiyong ;
Guo, Xuemei ;
Wang, Guoli .
PATTERN RECOGNITION LETTERS, 2014, 49 :231-237
[8]   MEMS reservoir computing system with stiffness modulation for multi-scene data processing at the edge [J].
Guo, Xiaowei ;
Yang, Wuhao ;
Xiong, Xingyin ;
Wang, Zheng ;
Zou, Xudong .
MICROSYSTEMS & NANOENGINEERING, 2024, 10 (01)
[9]   A high-dimensional in-sensor reservoir computing system with optoelectronic memristors for high-performance neuromorphic machine vision [J].
Jang, Yoon Ho ;
Han, Joon-Kyu ;
Moon, Sangik ;
Shim, Sung Keun ;
Han, Janguk ;
Cheong, Sunwoo ;
Lee, Soo Hyung ;
Hwang, Cheol Seong .
MATERIALS HORIZONS, 2024, 11 (02) :499-509
[10]   Dynamical memristors for higher-complexity neuromorphic computing [J].
Kumar, Suhas ;
Wang, Xinxin ;
Strachan, John Paul ;
Yang, Yuchao ;
Lu, Wei D. .
NATURE REVIEWS MATERIALS, 2022, 7 (07) :575-591