An Energy-Efficient and High-Accuracy Spiking Neural Network Utilizing Asynchronous CORDIC for On-FPGA STDP Learning

被引:0
作者
Sheng, Shirui [2 ]
Chong, Kwen-Siong [1 ]
Ng, Jun-Sheng [2 ]
Lin, Zhiping [2 ]
Chang, Joseph S. [2 ]
Gwee, Bah-Hwee [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Zero Error Syst Pte Ltd, Singapore 608598, Singapore
来源
2024 IEEE THE 20TH ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, APCCAS 2024 | 2024年
关键词
Asynchronous; dual-rail; CORDIC; online learning; spiking neural network; neuromorphic hardware; FPGA; DESIGN; SYSTEM; MODEL;
D O I
10.1109/APCCAS62602.2024.10808853
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of neuromorphic systems, Spiking Neural Networks (SNNs) present notable advantages in energy conservation and real-time learning. This paper proposes an efficient hardware design for biological neuron models, specifically utilizing the Leaky Integrate and Fire (LIF) neuron and the COordinate Rotation DIgital Computer (CORDIC) algorithm. The asynchronous CORDIC (async-CORDIC) based design significantly improves accuracy and energy efficiency, outperforming conventional CORDIC approaches. We integrate CORDIC iterative pipelines with dual-rail logic using handshaking control, reducing switching activity and power dissipation by approximately 23%. Async-CORDIC design improves hardware efficiency, Spike-Timing Dependent Plasticity (STDP) based learning, and energy efficiency on FPGA, enhancing switching cycle utilization by 21% through fewer iteration stages. Our design reduces the average error in STDP exponentiation calculations by 39%. In real-world tasks, such as digit classification using the MNIST dataset, our implementation achieves up to approximately 95% accuracy.
引用
收藏
页码:571 / 575
页数:5
相关论文
共 34 条
[1]   Spike-Based Synaptic Plasticity in Silicon: Design, Implementation, Application, and Challenges [J].
Azghadi, Mostafa Rahimi ;
Iannella, Nicolangelo ;
Al-Sarawi, Said F. ;
Indiveri, Giacomo ;
Abbott, Derek .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :717-737
[2]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[3]   A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input [J].
Burkitt, A. N. .
BIOLOGICAL CYBERNETICS, 2006, 95 (01) :1-19
[4]  
Cassidy A, 2011, IEEE INT SYMP CIRC S, P673
[5]   Design of silicon brains in the nano-CMOS era: Spiking neurons, learning synapses and neural architecture optimization [J].
Cassidy, Andrew S. ;
Georgiou, Julius ;
Andreou, Andreas G. .
NEURAL NETWORKS, 2013, 45 :4-26
[6]   A 4096-Neuron 1M-Synapse 3.8-pJ/SOP Spiking Neural Network With On-Chip STDP Learning and Sparse Weights in 10-nm FinFET CMOS [J].
Chen, Gregory K. ;
Kumar, Raghavan ;
Sumbul, H. Ekin ;
Knag, Phil C. ;
Krishnamurthy, Ram K. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (04) :992-1002
[7]   Dual-Hiding Side-Channel-Attack Resistant FPGA-Based Asynchronous-Logic AES: Design, Countermeasures and Evaluation [J].
Chong, Kwen-Siong ;
Ng, Jun-Sheng ;
Chen, Juncheng ;
Lwin, Ne Kyaw Zwa ;
Kyaw, Nay Aung ;
Ho, Weng-Geng ;
Chang, Joseph ;
Gwee, Bah-Hwee .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2021, 11 (02) :343-356
[8]  
Chong KS, 2015, IEEE C ELEC DEVICES, P297, DOI 10.1109/EDSSC.2015.7285109
[9]   Unsupervised learning of digit recognition using spike-timing-dependent plasticity [J].
Diehl, Peter U. ;
Cook, Matthew .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2015, 9
[10]   The SpiNNaker Project [J].
Furber, Steve B. ;
Galluppi, Francesco ;
Temple, Steve ;
Plana, Luis A. .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :652-665