A switch method framework for process superstructure optimization

被引:0
作者
Muhammed, Tasneem [1 ,2 ]
Galvanin, Federico [3 ]
Tokay, Begum [4 ]
Conradie, Alex [1 ,5 ]
机构
[1] Univ Nottingham, Fac Engn, Sustainable Proc Technol Res Grp, Nottingham NG7 2RD, England
[2] Red Sea Univ, Dept Chem Engn, Port Sudan, Sudan
[3] UCL, Dept Chem Engn, Torrington Pl, London WC1E 7JE, England
[4] Univ Nottingham, Fac Engn, Adv Mat Res Grp, Nottingham NG7 2RD, England
[5] UCL, Dept Biochem Engn, Mfg Futures Lab, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Process superstructure; Hierarchical decomposition; Switch Method Framework; Genetic algorithm; Techno-economic analysis; Isomerization process; Process synthesis; GENETIC ALGORITHM; LIGHT NAPHTHA; DISTILLATION; DESIGN;
D O I
10.1016/j.applthermaleng.2025.127136
中图分类号
O414.1 [热力学];
学科分类号
摘要
Process synthesis has an enduring impact on the economic performance of a chemical process. This study demonstrates a Switch Method Framework (SMF) for superstructure-based process synthesis using an isomerization process for gasoline production as case study. SMF is distinguished from other superstructure representations by modular superstructure elements integrated through switches and distributors, where each element contains unit options selected using methodologies from hierarchical decomposition. As such, SMF combines the best of hierarchical decomposition with the best of superstructure synthesis, blending practical representation of process route combinations with robust exploration of the optionality within the superstructure. SMF uses a genetic algorithm to both integrate unit options between superstructure elements and optimise the operating conditions towards maximal techno-economic return. Applying SMF to the case study, the combination of a Pt/ SO4-ZrO2 catalyst and Simulated Moving Bed (SMB) yielded a maximum Net Present Value (NPV) of $220 million and gasoline research octane number of 95. Compared to a benchmark analogous to the Penex-Molex process, employing a Pt/Al2O3-CCl4 catalyst and SMB, SMF increased the NPV by 18%. Given the improved techno-economics and product quality, SMF shows promise as a hybrid method combining decades of process engineering experience and heuristics with global optimization of the process flowsheet.
引用
收藏
页数:14
相关论文
共 63 条
[1]   Heat exchanger network synthesis using genetic algorithm and differential evolution [J].
Aguitoni, Maria Claudia ;
Pavao, Leandro Vitor ;
Siqueira, Paulo Henrique ;
Jimenez, Laureano ;
da Silva Sa Ravagnani, Mauro Antonio .
COMPUTERS & CHEMICAL ENGINEERING, 2018, 117 :82-96
[2]   Catalytic Upgrading of Light Naphtha to Gasoline Blending Components: A Mini Review [J].
Aitani, Abdullah ;
Akhtar, Muhammad Naseem ;
Al-Khattaf, Sulaiman ;
Jin, Yaming ;
Koseoglo, Omer ;
Klein, Michael T. .
ENERGY & FUELS, 2019, 33 (05) :3828-3843
[3]   Stochastic simulation-based superstructure optimization framework for process synthesis and design under uncertainty [J].
Al, Resul ;
Behera, Chitta Ranjan ;
Gernaey, Krist V. ;
Sin, Gurkan .
COMPUTERS & CHEMICAL ENGINEERING, 2020, 143
[4]   Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization [J].
Alibrahim, Hussain ;
Ludwig, Simone A. .
2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, :1551-1559
[5]  
BakerRisk, 2020, Previous Year's Nelson-Farrar Cost Index Reports
[6]  
Bertran M.O., 2017, Advances in Energy Systems Engineering
[7]  
Brownel, 2017, About us
[8]   Global flowsheet optimization for reductive dimethoxymethane production using data-driven thermodynamic models [J].
Burre, Jannik ;
Kabatnik, Christoph ;
Al-Khatib, Mohamed ;
Bongartz, Dominik ;
Jupke, Andreas ;
Mitsos, Alexander .
COMPUTERS & CHEMICAL ENGINEERING, 2022, 162
[9]   Comparison of MINLP formulations for global superstructure optimization [J].
Burre, Jannik ;
Bongartz, Dominik ;
Mitsos, Alexander .
OPTIMIZATION AND ENGINEERING, 2023, 24 (02) :801-830
[10]  
Charis G., 2020, S. Afr. J. Chem. Eng., V32, P1026, DOI [10.1016/j.sajce.2020.01.001, DOI 10.1016/J.SAJCE.2020.01.001]