Rational Design of Yolk-Shell Fe7S8@C-N for High Rate and Long Cycle Li-Ion Batteries

被引:0
作者
Chen, Bin [1 ]
Cao, Tingyue [2 ]
Yu, Yan [2 ]
Chen, Meifang [1 ]
Liu, Xuhao [1 ]
Liang, Wei [1 ]
Jin, Huashuo [1 ]
Tian, Xuan [3 ]
Zhang, Panpan [3 ,4 ]
Lu, Xing [1 ,3 ]
Li, De [1 ]
Chen, Yong [5 ]
Wang, Wenxing [2 ]
Wei, Yaqing [1 ,4 ]
机构
[1] Hainan Univ, Sch Mat Sci & Engn, Hainan Prov Key Lab Res Utilizat Si Zr Ti Resource, State Key Lab Trop Ocean Engn Mat & Mat Evaluat, Haikou 570228, Hainan, Peoples R China
[2] Fudan Univ, Dept Chem, State Key Lab Mol Engn Polymers & iChem, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[4] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[5] Foshan Univ, Guangdong Key Lab Hydrogen Energy Technol, Foshan 528000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe7S8; Ferric sulfide; Li-ion batteries; Anode material; Yolk-shellstructure; Volume expansion; REDUCED GRAPHENE OXIDE; LITHIUM-ION; ANODE MATERIAL; CARBON; PERFORMANCE; STORAGE; NANOCOMPOSITE; MECHANISM;
D O I
10.1021/acs.nanolett.5c00404
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fe7S8 with large capacity shows high potential for Li-ion batteries, while it still suffers large volume expansion, resulting in fast capacity fading. Herein, a novel yolk-shell structural Fe7S8@C-N is rationally designed, in which the N-doped carbon layer with superior mechanical flexibility enables one to accommodate the volume expansion of the Fe7S8 core and promote its electronic transportation. Besides, the surface porous morphology is believed to facilitate electrolyte infiltration and Li-ion diffusion as well. Therefore, this modified Fe7S8@C-N electrode exhibits lower expansivity (similar to 28.0% vs similar to 87.4%), smaller voltage hysteresis, higher conductivity (1.6 x 10(-2) S/m) and better Li-diffusivity (1.09 x 10(-12) cm(2)/s) than its pure Fe7S8 powder; thus better cyclability (458 mAh/g vs 121 mAh/g after 150 cycles) and rate-capability improvement (546 mAh/g vs 125 mAh/g at 2000 mA/g) can be achieved. Such a yolk-shell structural design strategy can be easily extended to other conversion or alloying type materials for advanced energy storage.
引用
收藏
页码:10279 / 10286
页数:8
相关论文
共 57 条
[1]   P-Redox Mechanism at the Origin of the High Lithium Storage in NiP2-Based Batteries [J].
Boyanov, S. ;
Bernardi, J. ;
Bekaert, E. ;
Menetrier, M. ;
Doublet, M. -L. ;
Monconduit, L. .
CHEMISTRY OF MATERIALS, 2009, 21 (02) :298-308
[2]   Sn Anodes Protected by Intermetallic FeSn2 Layers for Long-lifespan Sodium-ion Batteries with High Initial Coulombic Efficiency of 93.8 % [J].
Chen, Ming ;
Xiao, Ping ;
Yang, Ke ;
Dong, Boxu ;
Xu, Dong ;
Yan, Changyu ;
Liu, Xuejiao ;
Zai, Jiantao ;
Low, CheeTong John ;
Qian, Xuefeng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (16)
[3]   Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries [J].
Cho, Jung Sang ;
Park, Jin-Sung ;
Kang, Yun Chan .
NANO RESEARCH, 2017, 10 (03) :897-907
[4]   Tailoring the Void Space Using Nanoreactors on Carbon Fibers to Confine SnS2 Nanosheets for Ultrastable Lithium/Sodium-Ion Batteries [J].
Cui, Zhe ;
He, Shu-Ang ;
Zhu, Jinqi ;
Gao, Mengluan ;
Wang, Hao ;
Zhang, Hao ;
Zou, Rujia .
SMALL METHODS, 2022, 6 (04)
[5]   Surface Modification of Fe7S8/C Anode via Ultrathin Amorphous TiO2 Layer for Enhanced Sodium Storage Performance [J].
Deng Xianchun ;
Chen Hui ;
Wu Xiangjiang ;
Wang Yun-Xiao ;
Zhong Faping ;
Ai Xinping ;
Yang Hanxi ;
Cao Yuliang .
SMALL, 2020, 16 (20)
[6]   Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance [J].
Fei, Ling ;
Lin, Qianglu ;
Yuan, Bin ;
Chen, Gen ;
Xie, Pu ;
Li, Yuling ;
Xu, Yun ;
Deng, Shuguang ;
Smirnov, Sergei ;
Luo, Hongmei .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) :5330-5335
[7]   A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries [J].
Guo, Sheng-Ping ;
Li, Jia-Chuang ;
Ma, Ze ;
Chi, Yang ;
Xue, Huai-Guo .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (04) :2345-2355
[8]   Facile method for adjustable preparation of nano-Fe7S8 supported by carbon as the anode for enhanced lithium/sodium storage properties in Li/Na-ion batteries [J].
Guo, Yumeng ;
Zhang, Lijuan ;
Wang, Jiantao ;
Liang, Jumei ;
Xi, Lidege .
ELECTROCHIMICA ACTA, 2019, 322
[9]   Yolk-Shell Structure and Spin-Polarized Surface Capacitance Enable FeS Stable and Fast Ion Transport in Sodium-Ion Batteries [J].
Han, Meisheng ;
Liu, Jie ;
Deng, Chengfang ;
Guo, Jincong ;
Mu, Yongbiao ;
Zou, Zhiyu ;
Zheng, Kunxiong ;
Yu, Fenghua ;
Li, Qiang ;
Wei, Lei ;
Zeng, Lin ;
Zhao, Tianshou .
ADVANCED ENERGY MATERIALS, 2024, 14 (22)
[10]   Monolayer MoS2 Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries [J].
Han, Meisheng ;
Mu, Yongbiao ;
Guo, Jincong ;
Wei, Lei ;
Zeng, Lin ;
Zhao, Tianshou .
NANO-MICRO LETTERS, 2023, 15 (01)