MINIMIZERS FOR FRACTIONAL SCHRODINGER EQUATIONS WITH INHOMOGENEOUS PERTURBATION

被引:0
作者
Zhang, Lei [1 ]
Liu, Lintao [2 ]
Chen, Haibo [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Peoples R China
[2] North Univ China, Dept Math, Taiyuan 030051, Peoples R China
关键词
Inhomogeneous fractional equation; energy estimate; blow-up analysis; mass concentration; CONCENTRATION-COMPACTNESS PRINCIPLE; POSITIVE SOLUTIONS; GROUND-STATES; EXISTENCE; SYMMETRY; LAPLACIAN; CALCULUS; BEHAVIOR; GUIDE;
D O I
10.58997/ejde.2025.59
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a constrained minimization problem arising in fractional Schrodinger equations with inhomogeneous term m m( m(x m(x) not equivalent to 1. We obtain the existence and limit behavior of constraint minimizers. The argument relies on energy estimates, blow-up analysis, comparison principle and iteration methods.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 38 条
[11]   Existence of normalized solutions for nonlinear fractional Schrodinger equations with trapping potentials [J].
Du, Miao ;
Tian, Lixin ;
Wang, Jun ;
Zhang, Fubao .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (03) :617-653
[12]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[13]  
Feng BH, 2013, ELECTRON J DIFFER EQ
[14]   Constraint minimizers of inhomogeneous mass subcritical minimization problems [J].
Gao, Yongshuai ;
Li, Shuai .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) :10062-10075
[15]   Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials [J].
Guo, Yujin ;
Wang, Zhi-Qiang ;
Zeng, Xiaoyu ;
Zhou, Huan-Song .
NONLINEARITY, 2018, 31 (03) :957-979
[16]   LOCAL UNIQUENESS AND REFINED SPIKE PROFILES OF GROUND STATES FOR TWO-DIMENSIONAL ATTRACTIVE BOSE-EINSTEIN CONDENSATES [J].
Guo, Yujin ;
Lin, Changshou ;
Wei, Juncheng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) :3671-3715
[17]   Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials [J].
Guo, Yujin ;
Zeng, Xiaoyu ;
Zhou, Huan-Song .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (03) :809-828
[18]   Concentration behavior of standing waves for almost mass critical nonlinear Schrodinger equations [J].
Guo, Yujin ;
Zeng, Xiaoyu ;
Zhou, Huan-Song .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) :2079-2100
[19]   On the Mass Concentration for Bose-Einstein Condensates with Attractive Interactions [J].
Guo, Yujin ;
Seiringer, Robert .
LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (02) :141-156
[20]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108