MINIMIZERS FOR FRACTIONAL SCHRODINGER EQUATIONS WITH INHOMOGENEOUS PERTURBATION

被引:0
作者
Zhang, Lei [1 ]
Liu, Lintao [2 ]
Chen, Haibo [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Peoples R China
[2] North Univ China, Dept Math, Taiyuan 030051, Peoples R China
关键词
Inhomogeneous fractional equation; energy estimate; blow-up analysis; mass concentration; CONCENTRATION-COMPACTNESS PRINCIPLE; POSITIVE SOLUTIONS; GROUND-STATES; EXISTENCE; SYMMETRY; LAPLACIAN; CALCULUS; BEHAVIOR; GUIDE;
D O I
10.58997/ejde.2025.59
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study a constrained minimization problem arising in fractional Schrodinger equations with inhomogeneous term m m( m(x m(x) not equivalent to 1. We obtain the existence and limit behavior of constraint minimizers. The argument relies on energy estimates, blow-up analysis, comparison principle and iteration methods.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 38 条
[1]   Fractional Laplacian in conformal geometry [J].
Chang, Sun-Yung Alice ;
del Mar Gonzalez, Maria .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1410-1432
[2]   Bound state for the fractional Schrodinger equation with unbounded potential [J].
Cheng, Ming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
[3]   On fractional Schrodinger equations with Hartree type nonlinearities [J].
Cingolani, Silvia ;
Gallo, Marco ;
Tanaka, Kazunaga .
MATHEMATICS IN ENGINEERING, 2022, 4 (06) :1-33
[4]  
Cont R., 2003, Chapman and Hall/CRC Financial Mathematics Series
[5]   Existence and decays of solutions for fractional Schrödinger equations with general potentials [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Yang, Xian .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (05)
[6]   Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrodinger equations [J].
Deng, Yinbin ;
Guo, Yujin ;
Lu, Lu .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[7]   On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions [J].
Deng, Yinbin ;
Guo, Yujin ;
Lu, Lu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :99-118
[8]   Existence Criteria of Positive Solutions for Fractional p-Laplacian Boundary Value Problems [J].
Deren, Fulya Yoruk ;
Cerdik, Tugba Senlik ;
Agarwal, Ravi P. .
FILOMAT, 2020, 34 (11) :3789-3799
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   EXISTENCE AND SYMMETRY RESULTS FOR A SCHRODINGER TYPE PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN [J].
Dipierro, S. ;
Palatucci, G. ;
Valdinoci, E. .
MATEMATICHE, 2013, 68 (01) :201-216