Model-based scenarios for achieving net negative emissions in the food system

被引:6
作者
Almaraz, Maya [1 ,2 ]
Houlton, Benjamin Z. [3 ,4 ]
Clark, Michael [5 ,6 ]
Holzer, Iris [4 ]
Zhou, Yanqiu [3 ]
Rasmussen, Laura [7 ]
Moberg, Emily [8 ]
Manaigo, Erin [4 ]
Halpern, Benjamin S. [1 ,9 ]
Scarborough, Courtney [1 ]
Lei, Xin Gen [10 ]
Ho, Melissa [8 ]
Allison, Edward [11 ]
Sibanda, Lindiwe [12 ]
Salter, Andrew [13 ]
机构
[1] Univ Calif Santa Barbara, Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93106 USA
[2] Princeton Univ, High Meadows Environm Inst, Princeton, NJ 08544 USA
[3] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY USA
[4] Univ Calif Davis, Dept Land & Air & Water Resources, Davis, CA USA
[5] Univ Oxford, Smith Sch Enterprise & Environm, Oxford, England
[6] Univ Oxford, Dept Biol, Oxford, England
[7] Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark
[8] World Wildlife Fund, Washington, DC USA
[9] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA USA
[10] Cornell Univ, Dept Anim Sci, Ithaca, NY USA
[11] WorldFish, Batu Maung, Penang, Malaysia
[12] Alliance Green Revolut Africa, Nairobi, Kenya
[13] Univ Nottingham, Sch Biosci & Future Food Beacon, Loughborough, England
来源
PLOS CLIMATE | 2023年 / 2卷 / 09期
关键词
GREENHOUSE-GAS MITIGATION; CLIMATE-CHANGE; CARBON SEQUESTRATION; ORGANIC-MATTER; COST; AGRICULTURE; SATURATION; NUTRIENT; YIELDS; CROPS;
D O I
10.1371/journal.pclm.0000181
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Most climate mitigation scenarios point to a combination of GHG emission reductions and CO2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for similar to 1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO2. However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted "cradle-to-grave" and "land-to-sea" emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.
引用
收藏
页数:25
相关论文
共 76 条
[1]   Methods for determining the CO2 removal capacity of enhanced weathering in agronomic settings [J].
Almaraz, Maya ;
Bingham, Nina L. L. ;
Holzer, Iris O. O. ;
Geoghegan, Emily K. K. ;
Goertzen, Heath ;
Sohng, Jaeeun ;
Houlton, Benjamin Z. Z. .
FRONTIERS IN CLIMATE, 2022, 4
[2]   The impact of excessive protein consumption on human wastewater nitrogen loading of US waters [J].
Almaraz, Maya ;
Kuempel, Caitlin D. ;
Salter, Andrew M. ;
Halpern, Benjamin S. .
FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2022, 20 (08) :452-458
[3]   Towards a global-scale soil climate mitigation strategy [J].
Amelung, W. ;
Bossio, D. ;
de Vries, W. ;
Kogel-Knabner, I ;
Lehmann, J. ;
Amundson, R. ;
Bol, R. ;
Collins, C. ;
Lal, R. ;
Leifeld, J. ;
Minasny, B. ;
Pan, G. ;
Paustian, K. ;
Rumpel, C. ;
Sanderman, J. ;
van Groenigen, J. W. ;
Mooney, S. ;
van Wesemael, B. ;
Wander, M. ;
Chabbi, A. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   The trouble with negative emissions [J].
Anderson, Kevin ;
Peters, Glen .
SCIENCE, 2016, 354 (6309) :182-183
[5]  
[Anonymous], 2005, Ecosystems and human well-being: Desertification synthesis
[6]  
[Anonymous], Agroforestry Definition
[7]  
[Anonymous], 2014, ESS Working Paper No 2, V2, P4
[8]   Farming with crops and rocks to address global climate, food and soil security [J].
Beerling, David J. ;
Leake, Jonathan R. ;
Long, Stephen P. ;
Scholes, Julie D. ;
Ton, Jurriaan ;
Nelson, Paul N. ;
Bird, Michael ;
Kantzas, Euripides ;
Taylor, Lyla L. ;
Sarkar, Binoy ;
Kelland, Mike ;
DeLucia, Evan ;
Kantola, Ilsa ;
Mueller, Christoph ;
Rau, Greg H. ;
Hansen, James .
NATURE PLANTS, 2018, 4 (03) :138-147
[9]   The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink [J].
Bernacchi, CJ ;
Hollinger, SE ;
Meyers, T .
GLOBAL CHANGE BIOLOGY, 2005, 11 (11) :1867-1872
[10]   Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector [J].
Bustamante, Mercedes ;
Robledo-Abad, Carmenza ;
Harper, Richard ;
Mbow, Cheikh ;
Ravindranat, Nijavalli H. ;
Sperling, Frank ;
Haberl, Helmut ;
Pinto, Alexandre de Siqueira ;
Smith, Pete .
GLOBAL CHANGE BIOLOGY, 2014, 20 (10) :3270-3290