LOCALISATION OF RACIAL INFORMATION IN CHEST X-RAY FOR DEEP LEARNING DIAGNOSIS

被引:2
作者
Salvado, Olivier [1 ,2 ]
Konate, Salamata [1 ,2 ]
Cruz, Rodrigo Santa [1 ,2 ]
Bdadley, Andrew [2 ]
Gichoya, Judy Wawira [3 ]
Seyyed-Kalantari, Laleh [4 ]
Price, Brandon [5 ]
Fookes, Clinton [2 ]
Lebrat, Leo [1 ,2 ]
机构
[1] CSIRO Data61, Imaging & Comp Vis Grp, Eveleigh, Australia
[2] Queensland Univ Technol, SAIVT, Brisbane, Australia
[3] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA USA
[4] York Univ, Elect Engn & Comp Sci, York, N Yorkshire, England
[5] Florida State Univ, Coll Med, Tallahassee, FL USA
来源
IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI 2024 | 2024年
关键词
saliency maps; eXplainable AI (XAI); chest; x-ray; deep learning; atlas-based registration;
D O I
10.1109/ISBI56570.2024.10635445
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning-based classification of diseases from Chest X-ray has been shown to use implicit information about the subjects' self-reported race, which could result in diagnostic bias. In this paper, we describe and compare two approaches to investigate where racial information is located in the image: first leveraging non-linear registration and computing atlas differences and second using saliency maps. We compute a map visualising the racial information between black and white subjects and discuss whether those maps are consistent with the model explanation.
引用
收藏
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 2018, RSNA pneumonia detection challenge
[2]  
Ashburner J., 2009, ENCY NEUROSCIENCE, P471, DOI [DOI 10.1016/B978-008045046-9.00306-5, 10.1016/B978-008045046-9.00306-5]
[3]  
Avants BB., 2009, Insight J, V2, P1, DOI DOI 10.54294/UVNHIN
[4]   BOLD5000, a public fMRI dataset while viewing 5000 visual images [J].
Chang, Nadine ;
Pyles, John A. ;
Marcus, Austin ;
Gupta, Abhinav ;
Tarr, Michael J. ;
Aminoff, Elissa M. .
SCIENTIFIC DATA, 2019, 6 (1)
[5]   Understanding Deep Networks via Extremal Perturbations and Smooth Masks [J].
Fong, Ruth ;
Patrick, Mandela ;
Vedaldi, Andrea .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :2950-2958
[6]  
Gichoya Judy Wawira, 2022, LANCET DIGITAL HLTH
[7]  
Konate Salamata, 2023, ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P1, DOI 10.1109/ICASSP49357.2023.10097093
[8]  
Petsiuk V., 2018, arXiv
[9]   Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study [J].
Seah, Jarrel C. Y. ;
Tang, Cyril H. M. ;
Buchlak, Quinlan D. ;
Holt, Xavier G. ;
Wardman, Jeffrey B. ;
Aimoldin, Anuar ;
Esmaili, Nazanin ;
Ahmad, Hassan ;
Hung Pham ;
Lambert, John F. ;
Hachey, Ben ;
Hogg, Stephen J. F. ;
Johnston, Benjamin P. ;
Bennett, Christine ;
Oakden-Rayner, Luke ;
Brotchie, Peter ;
Jones, Catherine M. .
LANCET DIGITAL HEALTH, 2021, 3 (08) :E496-E506
[10]  
Selvaraju RR, 2020, INT J COMPUT VISION, V128, P336, DOI [10.1109/ICCV.2017.74, 10.1007/s11263-019-01228-7]