RGB and RGNIR image dataset for machine learning in plastic waste detection

被引:0
作者
Tamin, Owen [1 ]
Moung, Ervin Gubin [2 ,3 ]
Dargham, Jamal Ahmad [4 ]
Karim, Samsul Ariffin Abdul [5 ]
Ibrahim, Ashraf Osman [6 ,7 ]
Adam, Nada [8 ]
Osman, Hadia Abdelgader [8 ]
机构
[1] Univ Malaysia Sabah, Fac Sci & Nat Resources, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
[2] Univ Malaysia Sabah, Fac Comp & Informat, Data Technol & Applicat DaTA Res Grp, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
[3] Univ Malaysia Sabah, Fac Comp & Informat, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
[4] Univ Malaysia Sabah, Fac Engn, Kota Kinabalu 88400, Sabah, Malaysia
[5] Univ Utara Malaysia, Inst Strateg Ind Decis Modelling ISIDM, UUM Coll Arts & Sci, Sch Quantitat Sci, Sintok 06010, Kedah Darul Ama, Malaysia
[6] Univ Teknol PETRONAS, Dept Comp & Informat Sci, Seri Iskandar 32610, Malaysia
[7] Univ Teknol PETRONAS, Emerging & Digital Technol Inst, Posit Comp Res Ctr, Seri Iskandar 32610, Malaysia
[8] Northern Border Univ, Appl Coll, Dept Comp Sci, Ar Ar 73213, Saudi Arabia
关键词
Plastic waste detection; Machine learning; Spectral imaging; Colour spaces; RGB; RGNIR; Plastic waste dataset; Automatic sorting methods; Deep learning; Environmental issues;
D O I
10.1016/j.dib.2025.111524
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The increasing volume of plastic waste is an environmental issue that demands effective sorting methods for different types of plastic. While spectral imaging offers a promising solution, it has several drawbacks, such as complexity, high cost, and limited spatial resolution. Machine learning has emerged as a potential solution for plastic waste due to its ability to analyse and interpret large volumes of data using algorithms. However, developing an efficient machine learning model requires a comprehensive dataset with information on the size, shape, colour, texture, and other features of plastic waste. Moreover, incorporating near-infrared (NIR) spectral data into machine learning models can reveal crucial information about plastic waste composition and structure that remains invisible in standard RGB images. Despite ( http://creativecommons.org/licenses/by-nc/4.0/ )
引用
收藏
页数:10
相关论文
共 17 条
[1]   Hyperspectral image analysis. A tutorial [J].
Amigo, Jose Manuel ;
Babamoradi, Hamid ;
Elcoroaristizabal, Saioa .
ANALYTICA CHIMICA ACTA, 2015, 896 :34-51
[2]  
Bobulski J., 2018, Advances in Intelligent Systems and Computing, V681, P57, DOI DOI 10.1007/978-3-319-68720-98
[3]   Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution [J].
Borrelle, Stephanie B. ;
Ringma, Jeremy ;
Law, Kara Lavender ;
Monnahan, Cole C. ;
Lebreton, Laurent ;
McGivern, Alexis ;
Murphy, Erin ;
Jambeck, Jenna ;
Leonard, George H. ;
Hilleary, Michelle A. ;
Eriksen, Marcus ;
Possingham, Hugh P. ;
De Frond, Hannah ;
Gerber, Leah R. ;
Polidoro, Beth ;
Tahir, Akbar ;
Bernard, Miranda ;
Mallos, Nicholas ;
Barnes, Megan ;
Rochman, Chelsea M. .
SCIENCE, 2020, 369 (6510) :1515-+
[4]   Waste processing: new near infrared technologies for material identification and selection [J].
Cesetti, M. ;
Nicolosi, P. .
JOURNAL OF INSTRUMENTATION, 2016, 11
[5]   The Effect of Training Data Selection on Face Recognition in Surveillance Application [J].
Dargham, Jamal Ahmad ;
Chekima, Ali ;
Moung, Ervin Gubin ;
Omatu, Sigeru .
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 12TH INTERNATIONAL CONFERENCE, 2015, 373 :227-234
[6]  
google, Google Maps
[7]   Malaysia's rainfall and Kalumpang agricultural station data for scattered data interpolation [J].
Karim, Samsul Ariffin Abdul ;
Tamin, Owen .
DATA IN BRIEF, 2024, 56
[8]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[9]   SpotGarbage: Smartphone App to Detect Garbage Using Deep Learning [J].
Mittal, Gaurav ;
Yagnik, Kaushal B. ;
Garg, Mohit ;
Krishnan, Narayanan C. .
UBICOMP'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, 2016, :940-945
[10]  
Proen‡a PF, 2020, Arxiv, DOI arXiv:2003.06975