Bayesian Learning-Based Sparse Channel Estimation in Visible Light ADO-OFDM Systems

被引:0
作者
Saxena, Shubham [1 ]
Srivastava, Suraj [2 ]
Sharma, Saurabh [1 ]
Jagannatham, Aditya K. [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Elect Engn, Kanpur, Uttar Pradesh, India
[2] Indian Inst Technol Jodhpur, Dept Elect Engn, Jodhpur, Rajasthan, India
来源
2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING | 2024年
关键词
Bayesian learning (BL); BCRLB; expectation maximization; channel estimation; visible light communication; DCO-OFDM; ACO-OFDM; IM/DD;
D O I
10.1109/VTC2024-SPRING62846.2024.10683529
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an innovative scheme for estimating the channel impulse response (CIR) in sparse multipath conditions for asymmetrically clipped direct current-biased optical OFDM (ADO-OFDM) visible light communication (VLC) systems, utilizing Bayesian learning (BL) techniques. We derive a multipath CIR model capturing both specular and diffusive reflections within the VLC system. Subsequently, we present a novel scheme for estimating the CIR in sparse multipath scenarios using the BL paradigm, which leverages the inherent sparsity of the multipath CIR in the delay domain. This scheme necessitates a constrained set of pilot subcarriers, thereby reducing pilot overhead when juxtaposed with traditional state-of-the-art channel estimation (CE) techniques. To assess the performance of the proposed BL-based paradigm for estimation, we compute the Oracle-MMSE (O-MMSE) along with the Bayesian Cramer Rao lower bound (BCRLB). Our extensive simulations reveal that even with a lower pilot overhead, the suggested BL method surpasses other conventional and sparse CE techniques across key metrics such as bit error-rate (BER) and normalized mean-square-error (NMSE).
引用
收藏
页数:5
相关论文
共 10 条
[1]  
Chen C, 2017, IEEE INT CONF COMM, P162, DOI 10.1109/ICCW.2017.7962651
[2]  
Dissanayake SD, 2011, IEEE GLOBE WORK, P782, DOI 10.1109/GLOCOMW.2011.6162561
[3]   Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems [J].
Dissanayake, Sarangi Devasmitha ;
Armstrong, Jean .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (07) :1063-1072
[4]   Efficient coding techniques for ADO-OFDM in IM/DD systems [J].
Eltoukhi, Muhammed Abd El-Aziz ;
Abd-Elnaby, Mohammed ;
El-Dolil, Sami A. ;
Abd El-Samie, Fathi E. .
PHOTONIC NETWORK COMMUNICATIONS, 2018, 36 (01) :128-139
[5]   Performance enhancement for visible light communication based ADO-OFDM [J].
Hameed, Samir M. ;
Abdulsatar, Sinan M. ;
Sabri, Atheer A. .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (06)
[6]   A physical model of the wireless infrared communication channel [J].
Jungnickel, V ;
Pohl, V ;
Nönnig, S ;
von Helmolt, C .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2002, 20 (03) :631-640
[7]   Visible Light Communication: Concepts, Applications and Challenges [J].
Matheus, Luiz Eduardo Mendes ;
Vieira, Alex Borges ;
Vieira, Luiz F. M. ;
Vieira, Marcos A. M. ;
Gnawali, Omprakash .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (04) :3204-3237
[8]   Sparse Channel Estimation for Visible Light Optical OFDM Systems Relying on Bayesian Learning [J].
Saxena, Shubham ;
Srivastava, Suraj ;
Sharma, Saurabh ;
Jagannatham, Aditya K. ;
Hanzo, Lajos .
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2023, 4 :2062-2079
[9]   Sparse Bayesian learning for basis selection [J].
Wipf, DP ;
Rao, BD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) :2153-2164
[10]   Compressed sensing theory-based channel estimation for optical orthogonal frequency division multiplexing communication system [J].
Zhao, Hui ;
Li, Minghui ;
Wang, Ruyan ;
Liu, Yuanni ;
Song, Daiping .
OPTICS COMMUNICATIONS, 2014, 326 :94-99