Recent Advances in Atomic Force Microscopy-Based Local Anodic Oxidation Nanolithography of 2D Materials

被引:0
作者
Yu, Jing [1 ,2 ]
Suleiman, Abdulsalam Aji [3 ]
Shi, Jing-Wen [4 ]
Ong, Ruey Jinq [2 ]
Ling, Francis Chi-Chung [2 ]
Zhang, Weiwen [1 ]
机构
[1] Shenzhen Technol Univ, Sino German Coll Intelligent Mfg, Shenzhen, Peoples R China
[2] Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
[3] Sivas Univ Sci & Technol, Dept Fundamental Engn Sci, TR-58000 Sivas, Turkiye
[4] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
来源
ADVANCED MATERIALS INTERFACES | 2025年
关键词
2D materials; atomic force microscopy; electronics; local anodic oxidation; nanolithography; oxidation and reduction; SCANNING PROBE LITHOGRAPHY; HEXAGONAL BORON-NITRIDE; FEW-LAYER MOS2; BLACK PHOSPHORUS; 2-DIMENSIONAL MATERIALS; GRAPHENE LAYERS; TRANSISTORS; OXIDE; SILICON; WATER;
D O I
10.1002/admi.202500137
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
2D materials garner significant research interest due to their unique properties. However, fabricating 2D material electronic devices requires arraying these materials, which often leads to issues like residual photoresist and the need for expensive equipment such as E-beam and optical lithography. To address these challenges, advanced nanopatterning techniques are essential. Atomic force microscopy (AFM)-based local anodic oxidation (LAO) is a low-cost method that avoids photoresist residues and can etch, oxidize, or alter material properties. This review summarizes the development of AFM LAO technology for 2D materials, discussing its reaction mechanisms, applications, and influencing factors. It covers the use of AFM LAO for nanolithography, oxidation, reduction, and device applications in materials like graphene, h-BN, TMDs, BP, and oxides. The review also examines the challenges and research gaps that remain, including technical obstacles and areas requiring further exploration. Finally, it offers insights into the future prospects of AFM LAO in 2D material-based nano-designs and devices, highlighting both its potential advantages and limitations.
引用
收藏
页数:27
相关论文
共 191 条
[1]  
Abbott J, 2017, NAT NANOTECHNOL, V12, P460, DOI [10.1038/NNANO.2017.3, 10.1038/nnano.2017.3]
[2]   Nanographene device fabrication using atomic force microscope [J].
Ahmad, Muneer ;
Seo, Yongho ;
Choi, Young Jin .
MICRO & NANO LETTERS, 2013, 8 (08) :422-425
[3]   Graphene and two-dimensional materials for silicon technology [J].
Akinwande, Deji ;
Huyghebaert, Cedric ;
Wang, Ching-Hua ;
Serna, Martha I. ;
Goossens, Stijn ;
Li, Lain-Jong ;
Wong, H. -S. Philip ;
Koppens, Frank H. L. .
NATURE, 2019, 573 (7775) :507-518
[4]  
Albisetti E, 2016, NAT NANOTECHNOL, V11, P545, DOI [10.1038/nnano.2016.25, 10.1038/NNANO.2016.25]
[5]   Local Anodic Oxidation of Graphene Layers on SiC [J].
Alekseev, P. A. ;
Borodin, B. R. ;
Dunaevskii, M. S. ;
Smirnov, A. N. ;
Davydov, V. Yu. ;
Lebedev, S. P. ;
Lebedev, A. A. .
TECHNICAL PHYSICS LETTERS, 2018, 44 (05) :381-383
[6]   Fabrication of 10-nm-scale nanoconstrictions in graphene using atomic force microscopy-based local anodic oxidation lithography [J].
Arai, Miho ;
Masubuchi, Satoru ;
Nose, Kenji ;
Mitsuda, Yoshitaka ;
Machida, Tomoki .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (04)
[7]   Atomic force microscope tip-induced local oxidation of silicon: Kinetics, mechanism, and nanofabrication [J].
Avouris, P ;
Hertel, T ;
Martel, R .
APPLIED PHYSICS LETTERS, 1997, 71 (02) :285-287
[8]   Efficient hole transfer from monolayer WS2 to ultrathin amorphous black phosphorus [J].
Bellus, Matthew Z. ;
Yang, Zhibin ;
Zereshki, Peymon ;
Hao, Jianhua ;
Lau, Shu Ping ;
Zhao, Hui .
NANOSCALE HORIZONS, 2019, 4 (01) :236-242
[9]   Measuring Hall viscosity of graphene's electron fluid [J].
Berdyugin, A. I. ;
Xu, S. G. ;
Pellegrino, F. M. D. ;
Kumar, R. Krishna ;
Principi, A. ;
Torre, I. ;
Ben Shalom, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Grigorieva, I. V. ;
Polini, M. ;
Geim, A. K. ;
Bandurin, D. A. .
SCIENCE, 2019, 364 (6436) :163-+
[10]   Nanofabrication meets open science [J].
Bereyhi, Mohammad J. ;
Kippenberg, Tobias J. .
NATURE NANOTECHNOLOGY, 2021, 16 (08) :850-852