MRI super-resolution reconstruction using efficient diffusion probabilistic model with residual shifting

被引:0
作者
Safari, Mojtaba [1 ,2 ]
Wang, Shansong [1 ,2 ]
Eidex, Zach [1 ,2 ]
Li, Qiang [1 ,2 ]
Qiu, Richard L. J. [1 ,2 ]
Middlebrooks, Erik H. [3 ]
Yu, David S. [1 ,2 ]
Yang, Xiaofeng [1 ,2 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Mayo Clin, Dept Radiol, Jacksonville, FL USA
基金
美国国家卫生研究院;
关键词
super-resolution; MRI; deep learning; reconstruction; diffusion model; brain T1 map; ultra-high field MRI; IMAGE SUPERRESOLUTION;
D O I
10.1088/1361-6560/ade049
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Magnetic resonance imaging (MRI) is essential in clinical and research contexts, providing exceptional soft-tissue contrast. However, prolonged acquisition times often lead to patient discomfort and motion artifacts. Diffusion-based deep learning super-resolution (SR) techniques reconstruct high-resolution (HR) images from low-resolution (LR) pairs, but they involve extensive sampling steps, limiting real-time application. To overcome these issues, this study introduces a residual error-shifting mechanism markedly reducing sampling steps while maintaining vital anatomical details, thereby accelerating MRI reconstruction. Approach. We developed Res-SRDiff, a novel diffusion-based SR framework incorporating residual error shifting into the forward diffusion process. This integration aligns the degraded HR and LR distributions, enabling efficient HR image reconstruction. We evaluated Res-SRDiff using ultra-high-field brain T1 MP2RAGE maps and T2-weighted prostate images, benchmarking it against Bicubic, Pix2pix, CycleGAN, SPSR, I2SB, and TM-DDPM methods. Quantitative assessments employed peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), gradient magnitude similarity deviation (GMSD), and learned perceptual image patch similarity. Additionally, we qualitatively and quantitatively assessed the proposed framework's individual components through an ablation study and conducted a Likert-based image quality evaluation. Main results. Res-SRDiff significantly surpassed most comparison methods regarding PSNR, SSIM, and GMSD for both datasets, with statistically significant improvements ( p-values << 0.05). The model achieved high-fidelity image reconstruction using only four sampling steps, drastically reducing computation time to under one second per slice. In contrast, traditional methods like TM-DDPM and I2SB required approximately 20 and 38 s per slice, respectively. Qualitative analysis showed Res-SRDiff effectively preserved fine anatomical details and lesion morphologies. The Likert study indicated that our method received the highest scores, 4.14 +/- 0.77(brain) and 4.80 +/- 0.40(prostate). Significance. Res-SRDiff demonstrates efficiency and accuracy, markedly improving computational speed and image quality. Incorporating residual error shifting into diffusion-based SR facilitates rapid, robust HR image reconstruction, enhancing clinical MRI workflow and advancing medical imaging research. Code available at https://github.com/mosaf/Res-SRDiff
引用
收藏
页数:15
相关论文
共 53 条
[1]   PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images [J].
Armato, Samuel G., II ;
Huisman, Henkjan ;
Drukker, Karen ;
Hadjiiski, Lubomir ;
Kirby, Justin S. ;
Petrick, Nicholas ;
Redmond, George ;
Giger, Maryellen L. ;
Cha, Kenny ;
Mamonov, Artem ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (04)
[2]   High-resolution MRI synthesis using a data-driven framework with denoising diffusion probabilistic modeling [J].
Chang, Chih-Wei ;
Peng, Junbo ;
Safari, Mojtaba ;
Salari, Elahheh ;
Pan, Shaoyan ;
Roper, Justin ;
Qiu, Richard L. J. ;
Gao, Yuan ;
Shu, Hui-Kuo ;
Mao, Hui ;
Yang, Xiaofeng .
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (04)
[3]   AI-Based Reconstruction for Fast MRI-A Systematic Review and Meta-Analysis [J].
Chen, Yutong ;
Schonlieb, Carola-Bibiane ;
Lio, Pietro ;
Leiner, Tim ;
Dragotti, Pier Luigi ;
Wang, Ge ;
Rueckert, Daniel ;
Firmin, David ;
Yang, Guang .
PROCEEDINGS OF THE IEEE, 2022, 110 (02) :224-245
[4]   Nonlocally Centralized Sparse Representation for Image Restoration [J].
Dong, Weisheng ;
Zhang, Lei ;
Shi, Guangming ;
Li, Xin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (04) :1618-1628
[5]   Oxygen-Guided Radiation Therapy [J].
Epel, Boris ;
Maggio, Matthew C. ;
Barth, Eugene D. ;
Miller, Richard C. ;
Pelizzari, Charles A. ;
Krzykawska-Serda, Martyna ;
Sundramoorthy, Subramanian, V ;
Aydogan, Bulent ;
Weichselbaum, Ralph R. ;
Tormyshev, Victor M. ;
Halpern, Howard J. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 103 (04) :977-984
[6]   Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy [J].
Fu, Yabo ;
Lei, Yang ;
Wang, Tonghe ;
Tian, Sibo ;
Patel, Pretesh ;
Jani, Ashesh B. ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2020, 47 (08) :3415-3422
[7]   CT-based synthetic iodine map generation using conditional denoising diffusion probabilistic model [J].
Gao, Yuan ;
Xie, Huiqiao ;
Chang, Chih-Wei ;
Peng, Junbo ;
Pan, Shaoyan ;
Qiu, Richard L. J. ;
Wang, Tonghe ;
Ghavidel, Beth ;
Roper, Justin ;
Zhou, Jun ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2024, 51 (09) :6246-6258
[8]  
Ho J., 2020, arXiv
[9]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976
[10]   MRI RESOLUTION ENHANCEMENT USING TOTAL VARIATION REGULARIZATION [J].
Joshi, Shantanu H. ;
Marquina, Antonio ;
Osher, Stanley J. ;
Dinov, Ivo ;
Van Horn, John D. ;
Toga, Arthur W. .
2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, :161-+