Global dynamics for the generalised chemotaxis-Navier-Stokes system in R3

被引:0
作者
He, Qingyou [1 ]
Shou, Ling-Yun [2 ,3 ]
Wu, Leyun [4 ]
机构
[1] Sorbonne Univ, Lab Computat & Quantitat Biol LCQB, Paris, France
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing, Peoples R China
[3] Nanjing Normal Univ Nanjing, Key Lab NSLSCS, Minist Educ, Nanjing, Peoples R China
[4] South China Univ Technol, Sch Math, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis-Navier-Stokes system; generalised dissipation; blow-up criteria; global existence; large-time behaviour; TENSOR-VALUED SENSITIVITY; LARGE TIME BEHAVIOR; WEAK SOLUTIONS; WELL-POSEDNESS; FLUID SYSTEM; EXISTENCE; REGULARITY; EQUATIONS; MODEL; BOUNDEDNESS;
D O I
10.1017/S0956792525000154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the chemotaxis-Navier-Stokes system with generalised fluid dissipation in R-3: {partial derivative(t)n + u . del n = Delta n- del . (chi (c)n del c), partial derivative(t)c + u . del c = Delta c - nf(c), partial derivative(t)t + u . del u + del P = -(-Delta)(alpha) u - n del phi, del.u = 0, which models the motion of swimming bacteria in water flows. First, we prove blow-up criteria of strong solutions to the Cauchy problem, including the Prodi-Serrin-type criterion for alpha > 3/4 and the Beirao da Veiga-type criterion for alpha > 1/2. Then, we verify the global existence and uniqueness of strong solutions for arbitrarily large initial fluid velocity and bacteria density for alpha >= 5/4. Furthermore, in the scenario of 3/4 < alpha < 5/4, we establish uniform regularity estimates and optimal time-decay rates of global solutions if only the L-2-norm of initial data is small. To our knowledge, this work provides the first result concerning the global existence and large-time behaviour of strong solutions for the chemotaxis-Navier-Stokes equations with possibly large oscillations.
引用
收藏
页数:38
相关论文
共 69 条
[1]   Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion [J].
Abe, S ;
Thurner, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) :403-407
[2]   Keller-Segel Chemotaxis Models: A Review [J].
Arumugam, Gurusamy ;
Tyagi, Jagmohan .
ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[4]  
Brandolese L., 2018, HDB MATH ANAL MECH V, P579
[5]   Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities [J].
Cao, Xinru ;
Lankeit, Johannes .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[6]   GLOBAL EXISTENCE AND DECAY RATES TO A SELF-CONSISTENT CHEMOTAXIS-FLUID SYSTEM [J].
Carrillo, Jose A. ;
Peng, Yingping ;
Xiang, Zhaoyin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (01) :116-153
[7]   Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1205-1235
[8]   EXISTENCE OF SMOOTH SOLUTIONS TO COUPLED CHEMOTAXIS-FLUID EQUATIONS [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) :2271-2297
[9]   Global regularity for the hyperdissipative Navier-Stokes equation below the critical order [J].
Colombo, Maria ;
Haffter, Silja .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 :815-836
[10]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407