Weak degeneracy of line graphs of planar graphs

被引:0
作者
Xu, Ningyan [1 ,2 ]
Zuo, Qian [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
List edge coloring; Edge DP-coloring; Weak degeneracy; Planar graph; LIST TOTAL COLORINGS; MAXIMUM DEGREE-7; EDGE;
D O I
10.1016/j.disc.2025.114625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Weak degeneracy is a generalization of degeneracy introduced by Bernshteyn and Lee (2023) [1] as a natural upper bound of many coloring parameters of graphs. For a graph G, let chi(G), chi(& ell;)(G), chi(DP)(G), and wd(G) denote its chromatic number, list chromatic number, DP-chromatic number and weak degeneracy, respectively. It is known that chi(G)<=chi(& ell;)(G)<=chi DP(G)<= wd(G)+1. In this paper, we prove that if G is a planar graph with maximum degree Delta, then for its line graph L(G), we have (1) wd(L(G))=Delta-1, if Delta >= 21; (2) wd(L(G))<=Delta, if Delta >= 9. This extends some known results on list edge coloring and edge DP-coloring of planar graphs. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:10
相关论文
共 22 条
[1]  
Bernshteyn A., 2018, Siberian Adv. Math., V21, P61, DOI DOI 10.3103/S1055134419030039
[2]   Weak degeneracy of graphs [J].
Bernshteyn, Anton ;
Lee, Eugene .
JOURNAL OF GRAPH THEORY, 2023, 103 (04) :607-634
[3]   PLANAR GRAPHS WITH Δ ≥ 8 ARE (Δ+1)-EDGE-CHOOSABLE [J].
Bonamy, Marthe .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) :1735-1763
[4]  
Bondy JA., 2008, Graduate texts in mathematics series, DOI [DOI 10.1007/978-1-84628-970-5, 10.1007/978-1-84628-970-5]
[5]   List edge and list total colourings of multigraphs [J].
Borodin, OV ;
Kostochka, AV ;
Woodall, DR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :184-204
[7]   Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 [J].
Dvorak, Zdenek ;
Postle, Luke .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 129 :38-54
[8]   THE LIST CHROMATIC INDEX OF A BIPARTITE MULTIGRAPH [J].
GALVIN, F .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) :153-158
[9]  
Haggkvist R., 1997, Combinatorics, Probability and Computing, V6, P295, DOI 10.1017/S0963548397002927
[10]   Weak degeneracy of planar graphs and locally planar graphs [J].
Han, Ming ;
Wang, Tao ;
Wu, Jianglin ;
Zhou, Huan ;
Zhu, Xuding .
ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (04)