Data-driven Dynamic Grey-Verhulst SEIRD Model for Public Health Emergencies Forecasting

被引:0
作者
Zhang, Shuhua [1 ]
Liu, Ming [1 ]
Li, Bingjun [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing 210094, Jiangsu, Peoples R China
[2] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450046, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic Grey-Verhulst model; SEIRD; Parameter updating; Public health emergencies; INFLUENZA-A H1N1; TRANSMISSION DYNAMICS; PREDICTION; DISEASE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Determining parameters in infectious disease dynamics models is crucial for simulating and predicting the development trends of public health emergencies. Utilizing real-time epidemic data and grey systems theory, our innovative approach bridges the Dynamic Grey Verhulst model and the SEIRD model, which respectively have advantages in short-term and long-term forecasting. The new model features a dynamically adjusting decision cycle to accommodate evolving epidemic data. We constructed a dynamic grey Verhulst model using the principle of metabolism, enabling it to dynamically update and iterate important parameters of infectious disease models. This results in accurate simulation and prediction of epidemic dynamics. Taking the SARS-CoV-2 Omicron outbreak in Shanghai, China, in the spring of 2022 as an example, the proposed Dynamic Grey-Verhulst SEIRD model (DGVM-SEIRD) provides a data-driven, high-sensitivity and high-precision method for predicting public health emergencies. Sensitivity tests also confirm the superiority of our model. Furthermore, validation with H1N1 influenza data from Beijing, the COVID-19 outbreak in Wuhan and SARSCoV-2 emergencies in the UK reinforces our model's accuracy. This methodology provides a highly flexible and responsive analytical tool for public health emergency management, offering scientific support for formulating more effective epidemic prevention and control strategies and emergency responses.
引用
收藏
页数:153
相关论文
共 48 条
[1]   Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India [J].
Arora, Parul ;
Kumar, Himanshu ;
Panigrahi, Bijaya Ketan .
CHAOS SOLITONS & FRACTALS, 2020, 139
[2]  
Bhanot G., 2020, medRxiv, DOI [10.1101/2020.05.26.20114058, DOI 10.1101/2020.05.26.20114058]
[3]   A new epidemics-logistics model: Insights into controlling the Ebola virus disease in West Africa [J].
Buyuktahtakm, I. Esra ;
des-Bordes, Emmanuel ;
Kibis, Eyyub Y. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 265 (03) :1046-1063
[4]   Modeling transmission of SARS-CoV-2 Omicron in China [J].
Cai, Jun ;
Deng, Xiaowei ;
Yang, Juan ;
Sun, Kaiyuan ;
Liu, Hengcong ;
Chen, Zhiyuan ;
Peng, Cheng ;
Chen, Xinhua ;
Wu, Qianhui ;
Zou, Junyi ;
Sun, Ruijia ;
Zheng, Wen ;
Zhao, Zeyao ;
Lu, Wanying ;
Liang, Yuxia ;
Zhou, Xiaoyu ;
Ajelli, Marco ;
Yu, Hongjie .
NATURE MEDICINE, 2022, 28 (07) :1468-+
[5]  
Chinazzi M, 2020, SCIENCE, V368, P395, DOI [10.1126/science.aba9757, 10.1101/2020.02.09.20021261]
[6]   Bayesian sequential data assimilation for COVID-19 forecasting [J].
Daza-Torres, Maria L. ;
Capistran, Marcos A. ;
Capella, Antonio ;
Christen, J. Andres .
EPIDEMICS, 2022, 39
[7]   A data-driven optimization approach for multi-period resource allocation in cholera outbreak control [J].
Du, Mu ;
Sai, Aditya ;
Kong, Nan .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 291 (03) :1106-1116
[8]   A novel grey model based on Susceptible Infected Recovered Model: A case study of COVD-19 [J].
Duan, Huiming ;
Nie, Weige .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 602
[9]   Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings [J].
Fraser, Christophe ;
Donnelly, Christl A. ;
Cauchemez, Simon ;
Hanage, William P. ;
Van Kerkhove, Maria D. ;
Hollingsworth, T. Deirdre ;
Griffin, Jamie ;
Baggaley, Rebecca F. ;
Jenkins, Helen E. ;
Lyons, Emily J. ;
Jombart, Thibaut ;
Hinsley, Wes R. ;
Grassly, Nicholas C. ;
Balloux, Francois ;
Ghani, Azra C. ;
Ferguson, Neil M. ;
Rambaut, Andrew ;
Pybus, Oliver G. ;
Lopez-Gatell, Hugo ;
Alpuche-Aranda, Celia M. ;
Bojorquez Chapela, Ietza ;
Palacios Zavala, Ethel ;
Espejo Guevara, Dulce Ma. ;
Checchi, Francesco ;
Garcia, Erika ;
Hugonnet, Stephane ;
Roth, Cathy .
SCIENCE, 2009, 324 (5934) :1557-1561
[10]   Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy [J].
Giordano, Giulia ;
Blanchini, Franco ;
Bruno, Raffaele ;
Colaneri, Patrizio ;
Di Filippo, Alessandro ;
Di Matteo, Angela ;
Colaneri, Marta .
NATURE MEDICINE, 2020, 26 (06) :855-+