Physiologically Based Pharmacokinetic Modeling of Antibiotics in Children: Perspectives on Model-Informed Precision Dosing

被引:0
作者
Tanaka, Ryota [1 ,2 ]
Irie, Kei [1 ]
Mizuno, Tomoyuki [1 ,3 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Translat & Clin Pharmacol, Cincinnati, OH 45229 USA
[2] Oita Univ Hosp, Dept Clin Pharm, Yufu 8795593, Japan
[3] Univ Cincinnati, Coll Med, Dept Pediat, Cincinnati, OH 45221 USA
来源
ANTIBIOTICS-BASEL | 2025年 / 14卷 / 06期
关键词
antibiotics; pediatrics; model-informed precision dosing; physiologically based pharmacokinetic modeling; PEDIATRIC-PATIENTS; P-GLYCOPROTEIN; PBPK; PREDICTION; METABOLISM; EXPERIENCE; ONTOGENY; OBESITY; DOSAGE; ADULTS;
D O I
10.3390/antibiotics14060541
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The appropriate use of antibiotics is crucial and involves selecting an optimal dosing regimen based on pharmacokinetic (PK) and pharmacodynamic (PD) indicators. Physiologically based pharmacokinetic (PBPK) modeling is a powerful tool that integrates drugs' physicochemical properties with anatomical and physiological data to predict PK behavior. In pediatric populations, PBPK modeling accounts for developmental changes in organ function, making it particularly useful for optimizing antibiotic dosing across different age groups, from neonates to adolescents. In recent decades, PBPK modeling has been widely applied to predict antibiotic disposition in pediatric patients for various clinical and research purposes. Model-informed precision dosing (MIPD) is an evolving approach that enhances traditional therapeutic drug monitoring by integrating multiple information sources into a mathematical framework. By incorporating PBPK modeling, MIPD could offer a more optimized antibiotic dosing that accounts for PK/PD parameters at the site of infection, improving therapeutic outcomes while minimizing toxicity. This review summarizes currently published pediatric PBPK modeling studies on antibiotics, covering various objectives such as evaluating drug-drug interactions, PK/PD analyses in targeted tissues, predicting PK in specific populations (e.g., maternal/fetal, renal impairment, obesity), and PK predictions for preterm neonates. Based on these reports, the review discusses the implications of PBPK modeling for MIPD in pediatric antibiotic therapy.
引用
收藏
页数:18
相关论文
共 82 条
[41]   Physiologically Based Pharmacokinetic Modeling and Simulation in Pediatric Drug Development [J].
Maharaj, A. R. ;
Edginton, A. N. .
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2014, 3 (11)
[42]   A Workflow Example of PBPK Modeling to Support Pediatric Research and Development: Case Study with Lorazepam [J].
Maharaj, A. R. ;
Barrett, J. S. ;
Edginton, A. N. .
AAPS JOURNAL, 2013, 15 (02) :455-464
[43]   Prediction of Clearance and Dose ofMidazolam in Preterm and Term Neonates: A Comparative Study Between Allometric Scaling and Physiologically Based Pharmacokinetic Modeling [J].
Mansoor, Najia ;
Ahmad, Tasneem ;
Khan, Rafeeq Alam ;
Sharib, Syed Mohammad ;
Mahmood, Iftekhar .
AMERICAN JOURNAL OF THERAPEUTICS, 2019, 26 (01) :E32-E37
[44]   Physiologically based pharmacokinetic-pharmacodynamic evaluation of meropenem plus fosfomycin in paediatrics [J].
Martins, Frederico S. ;
Zhu, Peijuan ;
Heinrichs, M. Tobias ;
Sy, Sherwin K. B. .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2021, 87 (03) :1012-1023
[45]   Physiologically based pharmacokinetic modelling to inform combination dosing regimens of ceftaroline and daptomycin in special populations [J].
Martins, Frederico Severino ;
Martins, Jose Eduardo Severino ;
Severino, Patricia ;
Annaert, Pieter ;
Sy, Sherwin K. B. .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2023, 89 (09) :2726-2738
[46]   Population pharmacokinetic studies in pediatrics:: Issues in design and analysis [J].
Meibohm, B ;
Läer, S ;
Panetta, JC ;
Barrett, JS .
AAPS JOURNAL, 2005, 7 (02) :E475-E487
[47]   Virtual twins for model-informed precision dosing of clozapine in patients with treatment-resistant schizophrenia [J].
Mostafa, Sam ;
Rafizadeh, Reza ;
Polasek, Thomas M. ;
Bousman, Chad A. ;
Rostami-Hodjegan, Amin ;
Stowe, Robert ;
Carrion, Prescilla ;
Sheffield, Leslie J. ;
Kirkpatrick, Carl M. J. .
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2024, 13 (03) :424-436
[48]   Application of Physiologically Based Pharmacokinetic-Pharmacodynamic Modeling in Preterm Neonates to Guide Gentamicin Dosing Decisions and Predict Antibacterial Effect [J].
Neeli, Harshith ;
Hanna, Nazeeh ;
Abduljalil, Khaled ;
Cusumano, Jaclyn ;
Taft, David R. .
JOURNAL OF CLINICAL PHARMACOLOGY, 2021, 61 (10) :1356-1365
[49]   Development of a Physiologically Based Pharmacokinetic Model of Ethionamide in the Pediatric Population by Integrating Flavin-Containing Monooxygenase 3 Maturational Changes Over Time [J].
Phuong Thi Thu Nguyen ;
Parvez, Md Masud ;
Kim, Min Jung ;
Ho Lee, Jung ;
Ahn, Sangzin ;
Ghim, Jong-Lyul ;
Shin, Jae-Gook .
JOURNAL OF CLINICAL PHARMACOLOGY, 2018, 58 (10) :1347-1360
[50]   Prediction of olanzapine exposure in individual patients using physiologically based pharmacokinetic modelling and simulation [J].
Polasek, Thomas M. ;
Tucker, Geoffrey T. ;
Sorich, Michael J. ;
Wiese, Michael D. ;
Mohan, Titus ;
Rostami-Hodjegan, Amin ;
Korprasertthaworn, Porntipa ;
Perera, Vidya ;
Rowland, Andrew .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2018, 84 (03) :462-476