Distributed Prescribed-Time Observer for Nonlinear Systems in Block-Triangular Form

被引:0
作者
de Heij, Vincent [1 ,2 ]
Niazi, M. Umar B. [3 ,4 ]
Johansson, Karl H. [3 ]
Ahmed, Saeed [1 ,2 ]
机构
[1] Univ Groningen, Fac Sci & Engn, Jan C Willems Ctr Syst & Control, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Engn & Technol Inst Groningen, Fac Sci & Engn, NL-9747 AG Groningen, Netherlands
[3] KTH Royal Inst Technol, Div Decis & Control Syst, Digital Futures, S-10044 Stockholm, Sweden
[4] MIT, Dept Elect Engn & Comp Sci, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2025年 / 9卷
关键词
Observers; Convergence; Nonlinear systems; Symmetric matrices; Observability; Directed graphs; Control systems; Vectors; Linear systems; Electronic mail; Distributed observers; sensor networks; prescribed-time state estimation; nonlinear systems;
D O I
10.1109/LCSYS.2025.3570577
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter proposes a design of a distributed prescribed-time observer for nonlinear systems representable in a block-triangular observable canonical form. Using a weighted average of neighbor estimates exchanged over a strongly connected digraph, each observer estimates the system state despite the limited observability of local sensor measurements. The proposed design guarantees that distributed state estimation errors converge to zero at a user-specified convergence time, irrespective of observers' initial conditions. To achieve this prescribed-time convergence, distributed observers implement time-varying local output injection gains that monotonically increase and approach infinity at the prescribed time. The theoretical convergence is rigorously proven and validated through numerical simulations, where some implementation issues due to increasing gains have also been clarified.
引用
收藏
页码:222 / 227
页数:6
相关论文
共 27 条
[11]   Prescribed-Time Observers for Linear Systems in Observer Canonical Form [J].
Holloway, John ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (09) :3905-3912
[12]   Distributing the Kalman filter for large-scale systems [J].
Khan, Usman A. ;
Moura, Jose M. F. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (10) :4919-4935
[13]  
Kim T, 2016, IEEE DECIS CONTR P, P6928, DOI 10.1109/CDC.2016.7799336
[14]  
LaSalle J. P., 1963, IFAC Proceedings, V1, P556
[15]  
Olfati-Saber R, 2007, IEEE DECIS CONTR P, P1814
[16]   Consensus problems in networks of agents with switching topology and time-delays [J].
Olfati-Saber, R ;
Murray, RM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (09) :1520-1533
[17]   Distributed Observers for LTI Systems With Finite Convergence Time: A Parameter-Estimation-Based Approach [J].
Ortega, Romeo ;
Nuno, Emmanuel ;
Bobtsov, Alexey .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (10) :4967-4974
[18]   Design of Distributed LTI Observers for State Omniscience [J].
Park, Shinkyu ;
Martins, Nuno C. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) :561-576
[19]   Consensus seeking in multiagent systems under dynamically changing interaction topologies [J].
Ren, W ;
Beard, RW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :655-661
[20]   Semi-global observer for multi-output nonlinear systems [J].
Shim, H ;
Son, YI ;
Seo, JH .
SYSTEMS & CONTROL LETTERS, 2001, 42 (03) :233-244