Bridging Quantum Computing and Differential Privacy: Insights into Quantum Computing Privacy

被引:0
作者
Zhao, Yusheng [1 ]
Zhong, Hui [2 ]
Zhang, Xinyue [3 ]
Li, Yuqing [1 ]
Zhang, Chi [1 ]
Pan, Miao [2 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Univ Houston, Houston, TX USA
[3] Kennesaw State Univ, Marietta, GA USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 1 | 2024年
关键词
Quantum computing; Quantum algorithm; Differential privacy;
D O I
10.1109/QCE60285.2024.00012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
While quantum computing has strong potential in data-driven fields, the privacy issue of sensitive or valuable information involved in the quantum algorithm should be considered. Differential privacy (DP), which is a fundamental privacy tool widely used in the classical scenario, has been extended to the quantum domain, i.e., quantum differential privacy (QDP). QDP may become one of the most promising approaches toward privacy-preserving quantum computing since it is not only compatible with classical DP mechanisms but also achieves privacy protection by exploiting unavoidable quantum noise in noisy intermediate-scale quantum (NISQ) devices. This paper provides an overview of the various implementations of QDP and their performance in terms of privacy parameters under the DP setting. Specifically, we propose a taxonomy of QDP techniques, categorizing the literature on whether internal or external randomization is used as a source to achieve QDP and how these implementations are applied to each phase of the quantum algorithm. We also discuss challenges and future directions for QDP. By summarizing recent advancements, we hope to provide a comprehensive, up-to-date review for researchers venturing into this field.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 65 条
[1]   Gentle Measurement of Quantum States and Differential Privacy [J].
Aaronson, Scott ;
Rothblum, Guy N. .
PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, :322-333
[2]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[3]  
Aleksandrowicz G., 2019, Qiskit: An open-source framework for quantum computing, V16, DOI 10.5281/zenodo.2562110
[4]  
Amazon Web Services, 2020, Amazon Braket Console
[5]  
Angrisani A., 2021, INT C MACH LEARN WOR
[6]  
Angrisani A., 2022, INT C LEARN REPR WOR
[7]  
Angrisani A, 2023, Arxiv, DOI arXiv:2307.04733
[8]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[9]  
Bausch J, 2020, ADV NEUR IN, V33
[10]  
Berger C, 2021, Arxiv, DOI arXiv:2107.05362