Improving Federated Learning UAV Urban Object Detection System via Data Heterogeneity Mitigation

被引:0
作者
Lu, You-Ru [1 ]
Sun, Dengfeng [1 ]
机构
[1] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47906 USA
来源
JOURNAL OF AEROSPACE INFORMATION SYSTEMS | 2025年
基金
美国国家科学基金会;
关键词
Machine Learning; Federated Learning; UAV; Data Heterogeneity; Object Detection; CHALLENGES;
D O I
10.2514/1.I011655
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Federated learning (FL)-based object detection systems provide many advantages, such as efficiency and privacy. However, performance degradation due to the data heterogeneity issue remains a critical yet often overlooked challenge in recent FL research. In this paper, we address the data heterogeneity issue by introducing model contrastive loss, which significantly improves performance compared to baseline methods. In addition, focal loss is applied to further enhance the prediction accuracy on minority-class objects. Experimental results demonstrate the effectiveness of the proposed federated training framework, achieving approximately 20% improvement in mean average precision over the baseline FedAvg. Furthermore, extensive ablation studies on different hyperparameters in the model contrastive loss are conducted, providing deeper insights into the impact of parameter selection.
引用
收藏
页数:8
相关论文
共 54 条
[1]   Multi-Agent Simulation to Envision Communication Strategies in Future Air Mobility Operations [J].
Barrett, Emily ;
Paladugu, Abhinay ;
Ijtsma, Martijn .
JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2024, 21 (08) :605-615
[2]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[3]   VisDrone-DET2021: The Vision Meets Drone Object detection Challenge Results [J].
Cao, Yaru ;
He, Zhijian ;
Wang, Lujia ;
Wang, Wenguan ;
Yuan, Yixuan ;
Zhang, Dingwen ;
Zhang, Jinglin ;
Zhu, Pengfei ;
Van Gool, Luc ;
Han, Junwei ;
Hoi, Steven ;
Hu, Qinghua ;
Liu, Ming ;
Cheng, Chong ;
Liu, Fanfan ;
Cao, Guojin ;
Li, Guozhen ;
Wang, Hongkai ;
He, Jianye ;
Wan, Junfeng ;
Wan, Qi ;
Zhao, Qi ;
Lyu, Shuchang ;
Zhao, Wenzhe ;
Lu, Xiaoqiang ;
Zhu, Xingkui ;
Liu, Yingjie ;
Lv, Yixuan ;
Ma, Yujing ;
Yang, Yuting ;
Wang, Zhe ;
Xu, Zhenyu ;
Luo, Zhipeng ;
Zhang, Zhimin ;
Zhang, Zhiguang ;
Li, Zihao ;
Zhang, Zixiao .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :2847-2854
[4]   Piloted Simulation-Based Assessment of Simplified Vehicle Operations for Urban Air Mobility [J].
Chakraborty, Imon ;
Comer, Anthony ;
Bhandari, Rajan ;
Putra, Stefanus Harris ;
Mishra, Aashutosh Aman ;
Schaller, Ross ;
Sizoo, David ;
Mcguire, Robert .
JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2024, 21 (05) :392-421
[5]  
Chen T., 2020, PMLR, P1597
[6]   Multi-Agent Grouping and Routing with Cooperative Tasks [J].
Choi, Euihyeon ;
Ahn, Jaemyung .
JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2025, 22 (03) :163-176
[7]  
Devarajan G. G., IEEE T CONSUMER ELEC, P1, DOI [10.1109/TCE.2024.3524585, DOI 10.1109/TCE.2024.3524585]
[8]   Federated Learning for IoT: A Survey of Techniques, Challenges, and Applications [J].
Dritsas, Elias ;
Trigka, Maria .
JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2025, 14 (01)
[9]  
Elloumi M, 2018, IEEE WCNC
[10]  
Howard AG, 2017, Arxiv, DOI [arXiv:1704.04861, 10.48550/arXiv.1704.04861]